Fréchet distribution

Fréchet
Probability density function

Cumulative distribution function

Parameters \alpha \in (0,\infty) shape.
(Optionally, two more parameters)
 s \in (0,\infty) scale (default:  s=1 \, )
  m \in (-\infty,\infty) location of minimum (default:  m=0 \, )
Support x>m
PDF \frac{\alpha}{s} \; \left(\frac{x-m}{s}\right)^{-1-\alpha} \; e^{-(\frac{x-m}{s})^{-\alpha}}
CDF e^{-(\frac{x-m}{s})^{-\alpha}}
Mean \begin{cases}
                  \ m+s\Gamma\left(1-\frac{1}{\alpha}\right)  & \text{for } \alpha>1  \\
                  \ \infty              & \text{otherwise}
                \end{cases}
Median m+\frac{s}{\sqrt[\alpha]{\log_e(2)}}
Mode m+s\left(\frac{\alpha}{1+\alpha}\right)^{1/\alpha}
Variance \begin{cases}
                  \ s^2\left(\Gamma\left(1-\frac{2}{\alpha}\right)- \left(\Gamma\left(1-\frac{1}{\alpha}\right)\right)^2\right)  & \text{for } \alpha>2  \\
                  \ \infty              & \text{otherwise}
                \end{cases}
Skewness \begin{cases}
                  \ \frac{\Gamma\left(1-\frac {3}{\alpha}\right)-3\Gamma\left(1-\frac {2}{\alpha}\right)\Gamma\left(1-\frac {1}{\alpha}\right)+2\Gamma^3\left(1-\frac {1}{\alpha} \right)}{\sqrt{ \left( \Gamma\left(1-\frac{2}{\alpha}\right)-\Gamma^2\left(1-\frac{1}{\alpha}\right) \right)^3 }}  & \text{for } \alpha>3  \\
                  \ \infty              & \text{otherwise}
                \end{cases}
Ex. kurtosis \begin{cases}
                  \ -6+ \frac{\Gamma \left(1-\frac{4}{\alpha}\right) -4\Gamma\left(1-\frac{3}{\alpha}\right) \Gamma\left(1-\frac{1}{\alpha}\right)+3 \Gamma^2\left(1-\frac{2}{\alpha} \right)} {\left[\Gamma \left(1-\frac{2}{\alpha}\right) - \Gamma^2 \left(1-\frac{1}{\alpha}\right) \right]^2}  & \text{for } \alpha>4  \\
                  \ \infty              & \text{otherwise}
                \end{cases}
Entropy  1 + \frac{\gamma}{\alpha} + \gamma +\ln \left( \frac{s}{\alpha} \right) , where \gamma is the Euler–Mascheroni constant.
MGF [1] Note: Moment k exists if \alpha>k
CF [1]

The Fréchet distribution, also known as inverse Weibull distribution,[2][3] is a special case of the generalized extreme value distribution. It has the cumulative distribution function

\Pr(X \le x)=e^{-x^{-\alpha}} \text{ if } x>0.

where α > 0 is a shape parameter. It can be generalised to include a location parameter m (the minimum) and a scale parameter s > 0 with the cumulative distribution function

\Pr(X \le x)=e^{-\left(\frac{x-m}{s}\right)^{-\alpha}} \text{ if } x>m.

Named for Maurice Fréchet who wrote a related paper in 1927, further work was done by Fisher and Tippett in 1928 and by Gumbel in 1958.

Characteristics

The single parameter Fréchet with parameter \alpha has standardized moment

\mu_k=\int_0^\infty x^k f(x)dx=\int_0^\infty t^{-\frac{k}{\alpha}}e^{-t} \, dt,

(with t=x^{-\alpha}) defined only for k<\alpha:

\mu_k=\Gamma\left(1-\frac{k}{\alpha}\right)

where \Gamma\left(z\right) is the Gamma function.

In particular:

The quantile q_y of order y can be expressed through the inverse of the distribution,

q_y=F^{-1}(y)=\left(-\log_e y \right)^{-\frac{1}{\alpha}}.

In particular the median is:

q_{1/2}=(\log_e 2)^{-\frac{1}{\alpha}}.

The mode of the distribution is \left(\frac{\alpha}{\alpha+1}\right)^\frac{1}{\alpha}.

Especially for the 3-parameter Fréchet, the first quartile is q_1= m+\frac{s}{\sqrt[\alpha]{\log(4)}} and the third quartile q_3= m+\frac{s}{\sqrt[\alpha]{\log(\frac{4}{3})}}.

Also the quantiles for the mean and mode are:

F(mean)=\exp  \left( -\Gamma^{-\alpha} \left(1- \frac{1}{\alpha} \right)  \right)
F(mode)=\exp  \left( -\frac{\alpha+1}{\alpha}  \right).
Fitted cumulative Fréchet distribution to extreme one-day rainfalls

Applications

Related distributions

Properties

See also

References

  1. 1 2 Muraleedharan. G, C. Guedes Soares and Cláudia Lucas (2011). "Characteristic and Moment Generating Functions of Generalised Extreme Value Distribution (GEV)". In Linda. L. Wright (Ed.), Sea Level Rise, Coastal Engineering, Shorelines and Tides, Chapter 14, pp. 269–276. Nova Science Publishers. ISBN 978-1-61728-655-1
  2. Khan M.S., Pasha G.R. and Pasha A.H. (February 2008). "Theoretical Analysis of Inverse Weibull Distribution" (PDF). WSEAS TRANSACTIONS on MATHEMATICS 7 (2). pp. 30–38.
  3. de Gusmão, FelipeR.S. and Ortega, EdwinM.M. and Cordeiro, GaussM. (2011). "The generalized inverse Weibull distribution". Statistical Papers 52 (3) (Springer-Verlag). pp. 591–619. doi:10.1007/s00362-009-0271-3. ISSN 0932-5026.
  4. Coles, Stuart (2001). An Introduction to Statistical Modeling of Extreme Values,. Springer-Verlag. ISBN 1-85233-459-2.

Publications

External links

This article is issued from Wikipedia - version of the Friday, October 02, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.