Rayleigh distribution
Probability density function | |
Cumulative distribution function | |
Parameters | scale: |
---|---|
Support | |
CDF | |
Quantile | |
Mean | |
Median | |
Mode | |
Variance | |
Skewness | |
Ex. kurtosis | |
Entropy | |
MGF | |
CF |
In probability theory and statistics, the Rayleigh distribution /ˈreɪli/ is a continuous probability distribution for positive-valued random variables.
A Rayleigh distribution is often observed when the overall magnitude of a vector is related to its directional components. One example where the Rayleigh distribution naturally arises is when wind velocity is analyzed into its orthogonal 2-dimensional vector components. Assuming that each component is uncorrelated, normally distributed with equal variance, and zero mean, then the overall wind speed (vector magnitude) will be characterized by a Rayleigh distribution. A second example of the distribution arises in the case of random complex numbers whose real and imaginary components are independently and identically distributed Gaussian with equal variance and zero mean. In that case, the absolute value of the complex number is Rayleigh-distributed.
The distribution is named after Lord Rayleigh[1]
Definition
The probability density function of the Rayleigh distribution is[2]
where is the scale parameter of the distribution. The cumulative distribution function is[2]
for
Relation to random vector lengths
Consider the two-dimensional vector which has components that are Gaussian-distributed, centered at zero, and independent. Then , and similarly for .
Let be the length of . It is distributed as
By transforming to the polar coordinate system one has
which is the Rayleigh distribution. It is straightforward to generalize to vectors of dimension other than 2. There are also generalizations when the components have unequal variance or correlations.
Properties
The raw moments are given by:
where is the Gamma function.
The mean and variance of a Rayleigh random variable may be expressed as:
and
The mode is and the maximum pdf is
The skewness is given by:
The excess kurtosis is given by:
The characteristic function is given by:
where is the imaginary error function. The moment generating function is given by
where is the error function.
Differential entropy
The differential entropy is given by
where is the Euler–Mascheroni constant.
Differential equation
The pdf of the Rayleigh distribution is a solution of the following differential equation:
Parameter estimation
Given a sample of N independent and identically distributed Rayleigh random variables with parameter ,
- is an unbiased maximum likelihood estimate.
- is a biased estimator that can be corrected via the formula
Confidence intervals
To find the (1 − α) confidence interval, first find the two numbers where:
then
Generating random variates
Given a random variate U drawn from the uniform distribution in the interval (0, 1), then the variate
has a Rayleigh distribution with parameter . This is obtained by applying the inverse transform sampling-method.
Related distributions
- is Rayleigh distributed if , where and are independent normal random variables.[5] (This gives motivation to the use of the symbol "sigma" in the above parameterization of the Rayleigh density.)
- The chi distribution with v = 2 is equivalent to Rayleigh Distribution with σ = 1. I.e., if , then has a chi-squared distribution with parameter , degrees of freedom, equal to two (N = 2)
- If , then has a gamma distribution with parameters and
- The Rice distribution is a generalization of the Rayleigh distribution.
- The Weibull distribution is a generalization of the Rayleigh distribution. In this instance, parameter is related to the Weibull scale parameter :
- The Maxwell–Boltzmann distribution describes the magnitude of a normal vector in three dimensions.
- If has an exponential distribution , then
Applications
An application of the estimation of σ can be found in magnetic resonance imaging (MRI). As MRI images are recorded as complex images but most often viewed as magnitude images, the background data is Rayleigh distributed. Hence, the above formula can be used to estimate the noise variance in an MRI image from background data.[6] [7]
Proof of correctness – Unequal variances
We start with
as above, except with and distinct.
Let so that , and differentiating we have:
Substituting,
As before, we perform a polar coordinate transformation:[8]
Substituting,
Simplifying,
See Hoyt distribution for more information.
See also
References
- ↑ "The Wave Theory of Light", Encyclopedic Britannica 1888; "The Problem of the Random Walk", Nature 1905 vol.72 p.318
- 1 2 Papoulis, Athanasios; Pillai, S. (2001) Probability, Random Variables and Stochastic Processe. ISBN 0073660116, ISBN 9780073660110
- ↑ Siddiqui, M. M. (1964) "Statistical inference for Rayleigh distributions", The Journal of Research of the National Bureau of Standards, Sec. D: Radio Science, Vol. 68D, No. 9, p. 1007
- ↑ Siddiqui, M. M. (1961) "Some Problems Connected With Rayleigh Distributions", The Journal of Research of the National Bureau of Standards, Sec. D: Radio Propagation, Vol. 66D, No. 2, p. 169
- ↑ Hogema, Jeroen (2005) "Shot group statistics"
- ↑ Sijbers J., den Dekker A. J., Raman E. and Van Dyck D. (1999) "Parameter estimation from magnitude MR images", International Journal of Imaging Systems and Technology, 10(2), 109–114
- ↑ den Dekker A. J., Sijbers J., (2014) "Data distributions in magnetic resonance images: a review", Physica Medica,
- ↑ http://physicspages.com/2012/12/24/coordinate-transformations-the-jacobian-determinant/