Variance-gamma distribution

variance-gamma distribution
Parameters \mu location (real)
\alpha (real)
\beta asymmetry parameter (real)
\lambda > 0
\gamma = \sqrt{\alpha^2 - \beta^2} > 0
Support x \in (-\infty; +\infty)\!
PDF \frac{\gamma^{2\lambda} | x - \mu|^{\lambda-1/2} K_{\lambda-1/2} \left(\alpha|x - \mu|\right)}{\sqrt{\pi} \Gamma (\lambda)(2 \alpha)^{\lambda-1/2}} \; e^{\beta (x - \mu)}

K_\lambda denotes a modified Bessel function of the second kind
\Gamma denotes the Gamma function
Mean \mu + 2 \beta \lambda/ \gamma^2
Variance 2\lambda(1 + 2 \beta^2/\gamma^2)/\gamma^2
MGF e^{\mu z} \left(\gamma/\sqrt{\alpha^2 -(\beta+z)^2}\right)^{2\lambda}

The variance-gamma distribution, generalized Laplace distribution[1] or Bessel function distribution[1] is a continuous probability distribution that is defined as the normal variance-mean mixture where the mixing density is the gamma distribution. The tails of the distribution decrease more slowly than the normal distribution. It is therefore suitable to model phenomena where numerically large values are more probable than is the case for the normal distribution. Examples are returns from financial assets and turbulent wind speeds. The distribution was introduced in the financial literature by Madan and Seneta.[2] The variance-gamma distributions form a subclass of the generalised hyperbolic distributions.

The fact that there is a simple expression for the moment generating function implies that simple expressions for all moments are available. The class of variance-gamma distributions is closed under convolution in the following sense. If X_1 and X_2 are independent random variables that are variance-gamma distributed with the same values of the parameters \alpha and \beta, but possibly different values of the other parameters, \lambda_1, \mu_1 and \lambda_2, \mu_2, respectively, then X_1 + X_2 is variance-gamma distributed with parameters \alpha, \beta, \lambda_1+\lambda_2 and \mu_1  + \mu_2.

The variance-gamma distribution can also be expressed in terms of three inputs parameters (C,G,M) denoted after the initials of its founders. If the "C", \lambda here, parameter is integer then the distribution has a closed form 2-EPT distribution. See 2-EPT Probability Density Function. Under this restriction closed form option prices can be derived.

See also Variance gamma process.

Differential equation

The pdf of the variance-gamma distribution is a solution of the following differential equation for x>u:

\left\{\begin{array}{l}
(x-\mu ) f''(x)-2 f'(x) (-\beta\mu+\lambda+\beta x-1)+
   f(x) \left(\alpha^2 \mu-\beta (\beta\mu-2 \lambda+2)+
   x \left(\beta^2-\alpha^2\right)\right)=0, \\[12pt]
f(0)=\frac{\sqrt{\alpha} \left(-\frac{1}{2}\right)^{\lambda-\frac{1}{2}}
   e^{-\beta\mu} \mu^{\lambda-\frac{1}{2}}
   \left(\alpha-\frac{\beta^2}{\alpha}\right)^{\lambda}
   K_{\lambda-\frac{1}{2}}(-\alpha\mu)}{\sqrt{\pi}
   \Gamma(\lambda)}, \\[12pt]
f'(0)=\frac{\sqrt{\alpha} 2^{\frac{1}{2}-\lambda} \mu e^{-\beta\mu}
   (-\mu )^{\lambda-
   \frac{5}{2}} \left(\alpha-\frac{\beta^2}{\alpha}\right)^{\lambda}
   \left((\beta\mu-2 \lambda+1) K_{\lambda -\frac{1}{2}}(-\alpha\mu)-
   \alpha\mu K_{\lambda+\frac{1}{2}}(-\alpha\mu)\right)}{\sqrt{\pi}
   \Gamma(\lambda)}
\end{array}\right\}

It is a solution of the following differential equation for x<u:

\left\{\begin{array}{l}
(x-\mu ) f''(x)-2 f'(x) (-\beta\mu+\lambda+\beta x-1)+
   f(x) \left(\alpha^2 \mu-\beta(\beta\mu-2 \lambda+2)+
   x \left(\beta^2-\alpha^2\right)\right)=0, \\[12pt]
f(0)=\frac{2^{\frac{1}{2}-\lambda}\sqrt{\frac{\alpha }{\mu}}
   e^{-\beta\mu} \left(\mu \left(\alpha-
   \frac{\beta^2}{\alpha}\right)\right)^{\lambda}
   K_{\lambda-\frac{1}{2}}(\alpha\mu)}{\sqrt{\pi}
   \Gamma(\lambda)}, \\[12pt]
f'(0)=\frac{\sqrt{\alpha} 2^{\frac{1}{2}-\lambda}
   e^{-\beta\mu} \mu^{\lambda-\frac{3}{2}}
   \left(\alpha-\frac{\beta^2}{\alpha}\right)^{\lambda}
   \left((\beta\mu-2 \lambda+1)
   K_{\lambda-\frac{1}{2}}(\alpha\mu)+\alpha\mu
   K_{\lambda+\frac{1}{2}}(\alpha\mu)\right)}{\sqrt{\pi}
   \Gamma (\lambda)}
\end{array}\right\}

Notes

  1. 1 2 Kotz, S.; et al. (2001). The Laplace Distribution and Generalizations. Birkhäuser. p. 180. ISBN 0-8176-4166-1.
  2. D.B. Madan and E. Seneta (1990): The variance gamma (V.G.) model for share market returns, Journal of Business, 63, pp. 511–524.
This article is issued from Wikipedia - version of the Sunday, September 20, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.