Raised cosine distribution

Raised cosine
Probability density function


Cumulative distribution function


Parameters

\mu\,(real)

s>0\,(real)
Support x \in [\mu-s,\mu+s]\,
PDF \frac{1}{2s}
\left[1+\cos\left(\frac{x\!-\!\mu}{s}\,\pi\right)\right]\,=\frac{1}{s}\operatorname{hvc}\left(\frac{x\!-\!\mu}{s}\,\pi\right)\,
CDF \frac{1}{2}\left[1\!+\!\frac{x\!-\!\mu}{s}
\!+\!\frac{1}{\pi}\sin\left(\frac{x\!-\!\mu}{s}\,\pi\right)\right]
Mean \mu\,
Median \mu\,
Mode \mu\,
Variance s^2\left(\frac{1}{3}-\frac{2}{\pi^2}\right)\,
Skewness 0\,
Ex. kurtosis \frac{6(90-\pi^4)}{5(\pi^2-6)^2}\,
MGF \frac{\pi^2\sinh(s t)}{st(\pi^2+s^2 t^2)}\,e^{\mu t}
CF \frac{\pi^2\sin(s t)}{st(\pi^2-s^2 t^2)}\,e^{i\mu t}

In probability theory and statistics, the raised cosine distribution is a continuous probability distribution supported on the interval [\mu-s,\mu+s]. The probability density function (PDF) is

f(x;\mu,s)=\frac{1}{2s}
\left[1+\cos\left(\frac{x\!-\!\mu}{s}\,\pi\right)\right]\,=\frac{1}{s}\operatorname{hvc}\left(\frac{x\!-\!\mu}{s}\,\pi\right)\,

for \mu-s \le x \le \mu+s and zero otherwise. The cumulative distribution function (CDF) is

F(x;\mu,s)=\frac{1}{2}\left[1\!+\!\frac{x\!-\!\mu}{s}
\!+\!\frac{1}{\pi}\sin\left(\frac{x\!-\!\mu}{s}\,\pi\right)\right]

for \mu-s \le x \le \mu+s and zero for x<\mu-s and unity for x>\mu+s.

The moments of the raised cosine distribution are somewhat complicated, but are considerably simplified for the standard raised cosine distribution. The standard raised cosine distribution is just the raised cosine distribution with \mu=0 and s=1. Because the standard raised cosine distribution is an even function, the odd moments are zero. The even moments are given by:

E(x^{2n})=\frac{1}{2}\int_{-1}^1  [1+\cos(x\pi)]x^{2n}\,dx =\int_{-1}^1 x^{2n}\operatorname{hvc}(x\pi)\,dx
= \frac{1}{n\!+\!1}+\frac{1}{1\!+\!2n}\,_1F_2
\left(n\!+\!\frac{1}{2};\frac{1}{2},n\!+\!\frac{3}{2};\frac{-\pi^2}{4}\right)

where \,_1F_2 is a generalized hypergeometric function.

Differential equation

The pdf of the raised cosine distribution is a solution to the following differential equation:

\left\{\begin{array}{l}
  2 s^3 f''(x)-2 \pi ^2 s f(x)+\pi ^2 = 0,\\
  f(0) = \frac{1}{s} \cosh^2\left(\frac{\pi  \mu }{2 s}\right),\\
  f'(0) = -\frac{\pi}{2 s^2} \sinh \left(\frac{\pi  \mu }{s}\right)
  \end{array}\right\}

See also

References

This article is issued from Wikipedia - version of the Sunday, December 06, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.