Normal-inverse-Wishart distribution

normal-inverse-Wishart
Notation (\boldsymbol\mu,\boldsymbol\Sigma) \sim \mathrm{NIW}(\boldsymbol\mu_0,\lambda,\boldsymbol\Psi,\nu)
Parameters \boldsymbol\mu_0\in\mathbb{R}^D\, location (vector of real)
\lambda > 0\, (real)
\boldsymbol\Psi \in\mathbb{R}^{D\times D} inverse scale matrix (pos. def.)
\nu > D-1\, (real)
Support \boldsymbol\mu\in\mathbb{R}^D ; \boldsymbol\Sigma \in\mathbb{R}^{D\times D} covariance matrix (pos. def.)
PDF f(\boldsymbol\mu,\boldsymbol\Sigma|\boldsymbol\mu_0,\lambda,\boldsymbol\Psi,\nu) = \mathcal{N}(\boldsymbol\mu|\boldsymbol\mu_0,\tfrac{1}{\lambda}\boldsymbol\Sigma)\ \mathcal{W}^{-1}(\boldsymbol\Sigma|\boldsymbol\Psi,\nu)

In probability theory and statistics, the normal-inverse-Wishart distribution (or Gaussian-inverse-Wishart distribution) is a multivariate four-parameter family of continuous probability distributions. It is the conjugate prior of a multivariate normal distribution with unknown mean and covariance matrix (the inverse of the precision matrix).[1]

Definition

Suppose

  \boldsymbol\mu|\boldsymbol\mu_0,\lambda,\boldsymbol\Sigma \sim \mathcal{N}\left(\boldsymbol\mu\Big|\boldsymbol\mu_0,\frac{1}{\lambda}\boldsymbol\Sigma\right)

has a multivariate normal distribution with mean \boldsymbol\mu_0 and covariance matrix \tfrac{1}{\lambda}\boldsymbol\Sigma, where

\boldsymbol\Sigma|\boldsymbol\Psi,\nu \sim \mathcal{W}^{-1}(\boldsymbol\Sigma|\boldsymbol\Psi,\nu)

has an inverse Wishart distribution. Then (\boldsymbol\mu,\boldsymbol\Sigma) has a normal-inverse-Wishart distribution, denoted as

 (\boldsymbol\mu,\boldsymbol\Sigma) \sim \mathrm{NIW}(\boldsymbol\mu_0,\lambda,\boldsymbol\Psi,\nu)  .

Characterization

Probability density function

f(\boldsymbol\mu,\boldsymbol\Sigma|\boldsymbol\mu_0,\lambda,\boldsymbol\Psi,\nu) = \mathcal{N}\left(\boldsymbol\mu\Big|\boldsymbol\mu_0,\frac{1}{\lambda}\boldsymbol\Sigma\right) \mathcal{W}^{-1}(\boldsymbol\Sigma|\boldsymbol\Psi,\nu)

Properties

Marginal distributions

By construction, the marginal distribution over \boldsymbol\Sigma is an inverse Wishart distribution, and the conditional distribution over \boldsymbol\mu given \boldsymbol\Sigma is a multivariate normal distribution. The marginal distribution over \boldsymbol\mu is a multivariate t-distribution.

Posterior distribution of the parameters

Suppose the sampling density is a multivariate normal distribution

\boldsymbol{y_i}|\boldsymbol\mu,\boldsymbol\Sigma \sim \mathcal{N}_p(\boldsymbol\mu,\boldsymbol\Sigma)

where \boldsymbol{y} is an n\times p matrix and \boldsymbol{y_i} (of length p) is row i of the matrix .

With the mean and covariance matrix of the sampling distribution is unknown, we can place a Normal-Inverse-Wishart prior on the mean and covariance parameters jointly


(\boldsymbol\mu,\boldsymbol\Sigma) \sim \mathrm{NIW}(\boldsymbol\mu_0,\lambda,\boldsymbol\Psi,\nu).

The resulting posterior distribution for the mean and covariance matrix will also be a Nomal-Inverse-Wishart


(\boldsymbol\mu,\boldsymbol\Sigma|y) \sim \mathrm{NIW}(\boldsymbol\mu_n,\lambda_n,\boldsymbol\Psi_n,\nu_n),

where


\boldsymbol\mu_n = \frac{\lambda\boldsymbol\mu_0 + n \bar{\boldsymbol y}}{\lambda+n}

\lambda_n = \lambda + n

\nu_n = \nu + n

\boldsymbol\Psi_n^{-1} = \boldsymbol{\Psi^{-1} + S} +\frac{\lambda n}{\lambda+n} 
(\boldsymbol{\bar{y}-\mu_0})^T(\boldsymbol{\bar{y}-\mu_0})
~~~\mathrm{ with, }~~\boldsymbol{S}= \sum_{i=1}^{n} (\boldsymbol{y_i-\bar{y}})^T(\boldsymbol{y_i-\bar{y}})
.


To sample from the joint posterior of (\boldsymbol\mu,\boldsymbol\Sigma), one simply draws samples from \boldsymbol\Sigma|\boldsymbol y \sim \mathcal{W}^{-1}(\boldsymbol\Psi_n,\nu_n), then draw \boldsymbol\mu | \boldsymbol{\Sigma,y} \sim \mathcal{N}_p(\boldsymbol\mu_n,\boldsymbol\Sigma/\nu_n). To draw from the posterior predictive of a new observation, draw \boldsymbol\tilde{y}|\boldsymbol{\mu,\Sigma,y} \sim \mathcal{N}_p(\boldsymbol\mu,\boldsymbol\Sigma) , given the already drawn values of \boldsymbol\mu and \boldsymbol\Sigma.[2]

Generating normal-inverse-Wishart random variates

Generation of random variates is straightforward:

  1. Sample \boldsymbol\Sigma from an inverse Wishart distribution with parameters \boldsymbol\Psi and \nu
  2. Sample \boldsymbol\mu from a multivariate normal distribution with mean \boldsymbol\mu_0 and variance \boldsymbol \tfrac{1}{\lambda} \boldsymbol\Sigma

Related distributions

Notes

  1. Murphy, Kevin P. (2007). "Conjugate Bayesian analysis of the Gaussian distribution."
  2. Gelman, Andrew, et al. Bayesian data analysis. Vol. 2, p.73. Boca Raton, FL, USA: Chapman & Hall/CRC, 2014.

References

This article is issued from Wikipedia - version of the Tuesday, April 19, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.