Phenolphthalein

"phph" redirects here. For Ph-Ph, see biphenyl.
Phenolphthalein
Names
IUPAC name
3,3-bis(4-hydroxyphenyl)isobenzofuran-1(3H)-one
Identifiers
77-09-8 YesY
ChEMBL ChEMBL63857 YesY
ChemSpider 4600 YesY
DrugBank DB04824 N
Jmol 3D model Interactive image
KEGG D05456 YesY
PubChem 4764
UNII 6QK969R2IF N
Properties
C20H14O4
Molar mass 318.33 g·mol−1
Appearance White powder
Density 1.277 g/cm3 (32 °C (90 °F))
Melting point 258–263 °C (496–505 °F; 531–536 K) [1]
400 mg/L in water
Solubility in other solvents Insoluble in benzene or hexane, very soluble in ethanol and ether, slightly soluble in DMSO
UV-vismax) 552 nm (1st)
374 nm (2nd)[1]
Pharmacology
A06AB04 (WHO)
Hazards
GHS pictograms [1]
GHS signal word Danger
H341, H350, H361[1]
P201, P281, P308+313[1]
T Xn
R-phrases R22, R40, R45, R62, R68
S-phrases S53, S45
NFPA 704
Flammability code 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g., gasoline) Health code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g., chloroform Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen Special hazards (white): no codeNFPA 704 four-colored diamond
3
2
0
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Phenolphthalein /ˌfnɒlfˈθln/[2] is a chemical compound with the formula C20H14O4 and is often written as "HIn" or "phph" in shorthand notation. Phenolphthalein is often used as an indicator in acid–base titrations. For this application, it turns colorless in acidic solutions and pink in basic solutions.

Phenolphthalein is slightly soluble in water and usually is dissolved in alcohols for use in experiments. It is a weak acid, which can lose H+ ions in solution. The phenolphthalein molecule is colorless, and the phenolphthalein ion is pink. When a base is added to the phenolphthalein, the molecule ⇌ ions equilibrium shifts to the right, leading to more ionization as H+ ions are removed. This is predicted by Le Chatelier's principle.

Uses

Indicator

Phenolphthalein's common use is as an indicator in acid-base titrations. It also serves as a component of universal indicator, together with methyl red, bromothymol blue, and thymol blue.[3]

Phenolphthalein (pH indicator)
below pH 8.2 between
pH 10.0 and 13.0
colorless fuchsia

Phenolphthalein adopts four different states in aqueous solution: Under very strongly acidic conditions, it exists in protonated form, providing an orange coloration. Under strongly acidic conditions, the lactone form is colorless. The singly deprotonated phenolate form (the anion form of phenol) gives the familiar pink color. In strongly basic solutions, phenolphthalein's pink color undergoes a rather slow fading reaction and becomes completely colorless above 13.0 pH. The rather slow fading reaction that produces the colorless InOH3− ion is sometimes used in classes for the study of reaction kinetics.

Species H3In+ H2In In2− In(OH)3−
Structure
Model
pH <0 0−8.2 8.2−12.0 >13.0
Conditions strongly acidic acidic or near-neutral basic strongly basic
Color orange colorless pink to fuchsia colorless
Image
An animation of the pH dependent reaction mechanism: H3In+ → H2In → In2− → In(OH)3−

Phenolphthalein's pH sensitivity is exploited in other applications: Concrete has naturally high pH due to the calcium hydroxide formed when Portland cement reacts with water. As the concrete reacts with carbon dioxide in the atmosphere, pH decreases to 8.5-9. When a 1% phenolphthalein solution is applied to normal concrete, it turns bright pink. However, if it remains colorless, it shows that the concrete has undergone carbonation. In a similar application, spackling used to repair holes in drywall contains phenolphthalein. When applied, the basic spackling material retains a pink coloration; when the spackling has cured by reaction with atmospheric carbon dioxide, the pink color fades.[4]

Phenolphthalein is used in toys, for example as a component of disappearing inks, or disappearing dye on the Hollywood Hair Barbie hair. In the ink, it is mixed with sodium hydroxide, which reacts with carbon dioxide in the air. This reaction leads to the pH falling below the color change threshold as hydrogen ions are released by the reaction:

OH(aq) + CO2(g)CO32−(aq) + H+(aq)

To develop the hair and "magic" graphical patterns, the ink is sprayed with a solution of hydroxide, which leads to the appearance of the hidden graphics by the same mechanism described above for color change in alkaline solution. The pattern will eventually disappear again because of the reaction with carbon dioxide. Thymolphthalein is used for the same purpose and in the same way, when a blue color is desired.[5]

Medical uses

Phenolphthalein has been used for over a century as a laxative, but is now being removed from over-the-counter laxatives[6] because of concerns over carcinogenicity.[7][8]

Despite concerns regarding its carcinogenicity, the use of phenolphthalein as a laxative is unlikely to cause ovarian cancer.[9] Phenolphthalein has been found to inhibit human cellular calcium influx via store-operated calcium entry (SOCE, see Calcium release activated channel §Structure). This is effected by its inhibiting thrombin and thapsigargin, two activators of SOCE that increase intracellular free calcium.[10]

A reduced form of phenolphthalein, phenolphthalin, which is colorless, is used in a test to identify substances thought to contain blood, commonly known as the Kastle-Meyer test. A dry sample is collected with a swab or filter paper. A few drops of alcohol, then a few drops of phenolphthalin, and finally a few drops of hydrogen peroxide are dripped onto the sample. If the sample contains hemoglobin, it will turn pink immediately upon addition of the peroxide, because of the generation of phenolphthalein. A positive test indicates the sample contains hemoglobin and, therefore, is likely blood. A false positive can result from the presence of substances with catalytic activity similar to heme. This test is not destructive to the sample; it can be kept and used in further tests. This test has the same reaction with blood from any animal, so further testing would be required to determine whether it originates from a human.

Synthesis

Phenolphthalein can be synthesized by condensation of phthalic anhydride with two equivalents of phenol under acidic conditions (hence the name). It was discovered in 1871 by Adolf von Baeyer.[11][12][13]

Synthesis of phenolphthalein:[14]

The reaction can also be catalyzed by a mixture of zinc chloride and thionyl chloride.[15]

See also

References

  1. 1 2 3 4 5 "Phenolphthalein". Retrieved 7 October 2014.
  2. "phenolphthalein". Oxford English Dictionary (3rd ed.). Oxford University Press. September 2005. (Subscription or UK public library membership required.)
  3. "Universal Indicator". ISCID Encyclopedia of Science and Philosophy. Archived from the original on September 25, 2006.
  4. US 6531528, Ronald D. Kurp, "Ready to use spackle/repair product containing dryness indicator", assigned to Dap Products Inc.
  5. Toystore
  6. Spiller, H. A.; Winter, M. L.; Weber, J. A; Krenzelok, E. P.; Anderson, D. L.; Ryan, M. L. (May 2003). "Skin Breakdown and Blisters from Senna-Containing Laxatives in Young Children". The Annals of Pharmacotherapy 37 (5): 636–639. doi:10.1345/aph.1C439. PMID 12708936.
  7. Dunnick, J. K.; Hailey, J. R. (1996). "Phenolphthalein Exposure Causes Multiple Carcinogenic Effects in Experimental Model Systems" (pdf). Cancer Research 56 (21): 4922–4926. PMID 8895745.
  8. Tice, R. R.; Furedi-Machacek, M.; Satterfield, D.; Udumudi, A.; Vasquez, M.; Dunnick, J. K. (1998). "Measurement of Micronucleated Erythrocytes and DNA Damage during Chronic Ingestion of Phenolphthalein in Transgenic Female Mice Heterozygous for the p53 Gene". Environmental and Molecular Mutagenesis 31 (2): 113–124. doi:10.1002/(SICI)1098-2280(1998)31:2<113::AID-EM3>3.0.CO;2-N. PMID 9544189.
  9. Cooper, G. S.; Longnecker, M. P.; Peters, R. K. (2004). "Ovarian Cancer Risk and Use of Phenolphthalein-Containing Laxatives". Pharmacoepidemiology and Drug Safety 13 (1): 35–39. doi:10.1002/pds.824. PMID 14971121.
  10. Dobrydneva, Y.; Wilson, E.; Abelt, C. J.; Blackmore, P. F. (2009). "Phenolphthalein as a Prototype Drug for a Group of Structurally Related Calcium Channel Blockers in Human Platelets". Journal of Cardiovascular Pharmacology 53 (3): 231–240. doi:10.1097/FJC.0b013e31819b5494. PMID 19247192.
  11. Baeyer, A. (1871). "Ueber eine neue Klasse von Farbstoffen". Berichte der Deutschen Chemischen Gesellschaft 4 (2): 555–558. doi:10.1002/cber.18710040209.
  12. Baeyer, A. (1871). "Ueber die Phenolfarbstoffe". Berichte der Deutschen Chemischen Gesellschaft 4 (2): 658–665. doi:10.1002/cber.18710040247.
  13. Baeyer, A. (1871). "Ueber die Phenolfarbstoffe". Polytechnisches Journal 201 (89): 358–362.
  14. Max Hubacher, U.S. Patent 2,192,485 (1940 to Ex Lax Inc)
  15. U.S. Patent 2,522,939

External links

Wikimedia Commons has media related to Phenolphthalein.
This article is issued from Wikipedia - version of the Monday, April 18, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.