Steric 7-cubes


7-demicube


Steric 7-cube


Stericantic 7-cube


Steriruncic 7-cube


Steriruncicantic 7-cube

Orthogonal projections in D7 Coxeter plane

In seven-dimensional geometry, a stericated 7-cube (or runcinated 7-demicube) is a convex uniform 7-polytope, being a runcination of the uniform 7-demicube. There are 4 unique runcinations for the 7-demicube including truncation and cantellation.

Steric 7-cube

Steric 7-cube
Typeuniform 7-polytope
Schläfli symbol t0,3{3,34,1}
h4{4,35}
Coxeter-Dynkin diagram
5-faces
4-faces
Cells
Faces
Edges20160
Vertices2240
Vertex figure
Coxeter groupsD7, [34,1,1]
Propertiesconvex

Cartesian coordinates

The Cartesian coordinates for the vertices of a steric 7-cube centered at the origin are coordinate permutations:

(±1,±1,±1,±1,±3,±3,±3)

with an odd number of plus signs.

Images

orthographic projections
Coxeter
plane
B7 D7 D6
Graph
Dihedral
symmetry
[14/2] [12] [10]
Coxeter plane D5 D4 D3
Graph
Dihedral
symmetry
[8] [6] [4]
Coxeter
plane
A5 A3
Graph
Dihedral
symmetry
[6] [4]

Related polytopes

Dimensional family of steric n-cubes
n567
[1+,4,3n-2]
= [3,3n-3,1]
[1+,4,33]
= [3,32,1]
[1+,4,34]
= [3,33,1]
[1+,4,35]
= [3,34,1]
Cantic
figure
Coxeter
=

=

=
Schläfli h4{4,33} h4{4,34} h4{4,35}

Stericantic 7-cube

Images

orthographic projections
Coxeter
plane
B7 D7 D6
Graph
Dihedral
symmetry
[14/2] [12] [10]
Coxeter plane D5 D4 D3
Graph
Dihedral
symmetry
[8] [6] [4]
Coxeter
plane
A5 A3
Graph
Dihedral
symmetry
[6] [4]

Steriruncic 7-cube

Images

orthographic projections
Coxeter
plane
B7 D7 D6
Graph
Dihedral
symmetry
[14/2] [12] [10]
Coxeter plane D5 D4 D3
Graph
Dihedral
symmetry
[8] [6] [4]
Coxeter
plane
A5 A3
Graph
Dihedral
symmetry
[6] [4]

Steriruncicantic 7-cube

Images

orthographic projections
Coxeter
plane
B7 D7 D6
Graph
Dihedral
symmetry
[14/2] [12] [10]
Coxeter plane D5 D4 D3
Graph
Dihedral
symmetry
[8] [6] [4]
Coxeter
plane
A5 A3
Graph
Dihedral
symmetry
[6] [4]

Related polytopes

This polytope is based on the 7-demicube, a part of a dimensional family of uniform polytopes called demihypercubes for being alternation of the hypercube family.

There are 95 uniform polytopes with D7 symmetry, 63 are shared by the BC6 symmetry, and 32 are unique:

Notes

    References

    External links

    This article is issued from Wikipedia - version of the Thursday, April 23, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.