Acetylcholinesterase inhibitor

Not to be confused with ACE inhibitor.
Acetylcholinesterase inhibition

An acetylcholinesterase inhibitor (often abbreviated AChEI) or anti-cholinesterase is a chemical or a drug that inhibits the acetylcholinesterase enzyme from breaking down acetylcholine, thereby increasing both the level and duration of action of the neurotransmitter acetylcholine. Acetylcholinesterase inhibitors are classified as reversible, irreversible, or quasi-irreversible (also called pseudo-irreversible).[1]

Uses

Acetylcholinesterase inhibitors:[2]

Side effects

Potential side effects of acetylcholinesterase inhibitors[10][11]
mild – usually goes away potentially serious

Some major effects of cholinesterase inhibitors:

Administration of reversible cholinoesterase inhibitors is contraindicated with those that have urinary retention due to obstruction.

Titration phase

When used in the central nervous system to alleviate neurological symptoms, such as rivastigmine in Alzheimer's disease, all cholinesterase inhibitors require doses to be increased gradually over several weeks, and this is usually referred to as the titration phase. Many other types drug treatments may require a titration or stepping up phase. This strategy is used to build tolerance to adverse events or to reach a desired clinical effect.[12]

Examples

Reversible inhibitor

Compounds which function as reversible competitive or noncompetitive inhibitors of cholinesterase are those most likely to have therapeutic uses. These include:

Comparison table

Comparison of reversible acetylcholinesterase inhibitors
Inhibitor Duration Main site of action Clinical use Adverse effects
Edrophonium short (10 min.)[21] neuromuscular junction[21] diagnosis of myasthenia gravis[21]
Neostigmine medium (1–2 hrs.)[21] neuromuscular junction[21] visceral[21]
Physostigmine medium (0.5-5 hrs.)[21] postganglionic parasympathetic[21] treat glaucoma (eye drops)[21]
Pyridostigmine medium (2–3 hrs.)[21] neuromuscular junction[21]
Dyflos long[21] postganglionic parasympathetic[21] historically to treat glaucoma (eye drops)[21] toxic[21]
Echothiophate (irreversible) long[21] postganglionic parasympathetic[21] treat glaucoma (eye drops)[21] systemic effects[21]
Parathion (irreversible) long[21] none[21] toxic[21]

Quasi-irreversible inhibitor

Compounds which function as quasi-irreversible inhibitors of cholinesterase are those most likely to have use as chemical weapons or pesticides. These include:

See also

References

  1. Pohanka, M (2012). "Acetylcholinesterase inhibitors; a patent review (2008–present)". Expert Opinion on Therapeutic Patents 22 (8): 871–886. doi:10.1517/13543776.2012.701620. PMID 22768972.
  2. Colovic, MB; Krstic, Danijela Z.; Lazarevic-Pasti, Tamara D.; Bondzic, Aleksandra M.; Vasic, Vesna M. (2013). "Acetylcholinesterase Inhibitors: Pharmacology and Toxicology". Current Neuropharmacology 11 (3): 315–335. doi:10.2174/1570159X11311030006.
  3. Yuschak, Thomas (2006). Advanced Lucid Dreaming: The Power of Supplements. Lulu. ISBN 1430305428.
  4. Taylor, D; Paton, C; Shitij, K (2012). Maudsley Prescribing Guidelines in Psychiatry (11th ed.). West Sussex: Wiley-Blackwell. ISBN 978-0-47-097948-8.
  5. Singh, J; Kour, K; Jayaram, MB (January 2012). "Acetylcholinesterase inhibitors for schizophrenia". The Cochrane Database of Systematic Reviews 1: CD007967. doi:10.1002/14651858.CD007967.pub2. PMID 22258978.
  6. Choi, KH; Wykes, T; Kurtz, MM (September 2013). "Adjunctive pharmacotherapy for cognitive deficits in schizophrenia: meta-analytical investigation of efficacy". The British Journal of Psychiatry 203 (3): 172–178. doi:10.1192/bjp.bp.111.107359. PMID 23999481.
  7. Ribeiz, SR; Bassitt, DP; Arrais, JA; Avila, R; Steffens, DC; Bottino, CM (April 2010). "Cholinesterase Inhibitors as Adjunctive Therapy in Patients with Schizophrenia and Schizoaffective Disorder A Review and Meta-Analysis of the Literature". CNS Drugs 24 (4): 303–317. doi:10.2165/11530260-000000000-00000. PMID 20297855.
  8. Buckley, A. W.; Sassower, K.; Rodriguez, A. J.; Jennison, K.; Wingert, K.; Buckley, J.; Thurm, A.; Sato, S.; Swedo, S. (2011). "An Open Label Trial of Donepezil for Enhancement of Rapid Eye Movement Sleep in Young Children with Autism Spectrum Disorders". Journal of Child and Adolescent Psychopharmacology 21 (4): 353–357. doi:10.1089/cap.2010.0121. PMC 3157749. PMID 21851192.
  9. Handen, B. L.; Johnson, C. R.; McAuliffe-Bellin, S.; Murray, P. J.; Hardan, A. Y. (2011). "Safety and Efficacy of Donepezil in Children and Adolescents with Autism: Neuropsychological Measures". Journal of Child and Adolescent Psychopharmacology 21 (1): 43–50. doi:10.1089/cap.2010.0024. PMC 3037196. PMID 21309696.
  10. Consumer Reports; Drug Effectiveness Review Project (May 2012). "Evaluating Prescription Drugs Used to Treat: Alzheimer's Disease Comparing Effectiveness, Safety, and Price" (PDF). Best Buy Drugs (Consumer Reports): 2. Retrieved 1 May 2013., which claims Alzheimer's Association guidance as a source
  11. Inglis, F. (2002). "The tolerability and safety of cholinesterase inhibitors in the treatment of dementia". International journal of clinical practice. Supplement (127): 45–63. PMID 12139367.
  12. Inglis, F (2002). "The tolerability and safety of cholinesterase inhibitors in the treatment of dementia". International journal of clinical practice. Supplement (127): 45–63. PMID 12139367.
  13. Karadsheh, N; Kussie, P; Linthicum, DS (1991). "Inhibition of acetylcholinesterase by caffeine, anabasine, methyl pyrrolidine and their derivatives". Toxicology letters 55 (3): 335–42. doi:10.1016/0378-4274(91)90015-X. PMID 2003276.
  14. Pohanka, M (2014). "The effects of caffeine on the cholinergic system.". Mini Reviews in Medicinal Chemistry 14 (6): 543–549. doi:10.2174/1389557514666140529223436. PMID 24873820.
  15. Vladimir-Knežević, Sanda; Blažeković, Biljana; Kindl, Marija; Vladić, Jelena; Lower-Nedza, Agnieszka D.; Brantner, Adelheid H. (2014-01-09). "Acetylcholinesterase Inhibitory, Antioxidant and Phytochemical Properties of Selected Medicinal Plants of the Lamiaceae Family". Molecules 19 (1): 767–782. doi:10.3390/molecules19010767.
  16. Miyazawa, Mitsuo; Yamafuji, Chikako (2005-03-09). "Inhibition of acetylcholinesterase activity by bicyclic monoterpenoids". Journal of Agricultural and Food Chemistry 53 (5): 1765–1768. doi:10.1021/jf040019b. ISSN 0021-8561. PMID 15740071.
  17. Perry, Nicolette S. L.; Houghton, Peter J.; Theobald, Anthony; Jenner, Peter; Perry, Elaine K. (2000-07-01). "In-vitro Inhibition of Human Erythrocyte Acetylcholinesterase by Salvia lavandulaefolia Essential Oil and Constituent Terpenes". Journal of Pharmacy and Pharmacology 52 (7): 895–902. doi:10.1211/0022357001774598. ISSN 2042-7158.
  18. Bauer, Brent A. Alzheimer's disease. mayoclinic.com
  19. Wang, BS; Wang, H; Wei, ZH; Song, YY; Zhang, L; Chen, HZ (2009). "Efficacy and safety of natural acetylcholinesterase inhibitor huperzine A in the treatment of Alzheimer's disease: an updated meta-analysis". Journal of neural transmission (Vienna, Austria : 1996) 116 (4): 457–65. doi:10.1007/s00702-009-0189-x. PMID 19221692.
  20. Rhee IK, I; Appels N; Hofte B; Karabatak B; Erkelens C; Stark LM; Flippin LA; Verpoorte R (November 2004). "Isolation of the Acetylcholinesterase Inhibitor Ungeremine from Nerine bowdenii by Preparative HPLC Coupled On-Line to a Flow Assay System". Biological & Pharmaceutical Bulletin 27 (11): 1804–1809. doi:10.1248/bpb.27.1804. PMID 15516727.
  21. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Rang, H. P. (2003). Pharmacology. Edinburgh: Churchill Livingstone. ISBN 0-443-07145-4. Page 156

External links

This article is issued from Wikipedia - version of the Sunday, March 20, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.