Moffat distribution

The Moffat distribution, named after the physicist Anthony Moffat, is a continuous probability distribution based upon the Lorentzian distribution. Its particular importance in astrophysics is due to its ability to accurately reconstruct point spread functions, whose wings cannot be accurately portrayed by either a Gaussian or Lorentzian function.

Characterisation

Probability density function

The Moffat distribution can be described in two ways. Firstly as the distribution of a bivariate random variable (X,Y) centred at zero, and secondly as the distribution of the corresponding radii

R=\sqrt{X^2+Y^2}.

In terms of the random vector (X,Y), the distribution has the probability density function (pdf)


f(x,y; \alpha,\beta)=\frac{\beta-1}{\pi\alpha^2}\left[1+\left(\frac{x^2+y^2}{\alpha^2}\right)\right]^{-\beta} , \,

where \alpha and \beta are seeing dependent parameters. In this form, the distribution is a reparameterisation of a bivariate Student distribution with zero correlation.

In terms of the random variable R, the distribution has density


f(r; \alpha,\beta)=\frac{\beta-1}{\pi\alpha^2} \left[1+\left(\frac{r^2}{\alpha^2}\right)\right]^{-\beta} . \,

Differential equation

The pdf of the Moffat distribution is a solution to the following differential equation:

\left\{\begin{array}{l}
\left(r^3+\alpha ^2 r\right) f'(r)+f(r) \left(-\alpha ^2+2 \beta r^2-r^2\right)=0, \\
f(1)=\frac{2 (\beta -1) \left(\frac{1}{\alpha ^2}+1\right)^{-\beta}}{\alpha ^2}
\end{array}\right\}

References

This article is issued from Wikipedia - version of the Tuesday, January 12, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.