Noncentral F-distribution
In probability theory and statistics, the noncentral F-distribution is a continuous probability distribution that is a generalization of the (ordinary) F-distribution. It describes the distribution of the quotient (X/n1)/(Y/n2), where the numerator X has a noncentral chi-squared distribution with n1 degrees of freedom and the denominator Y has a central chi-squared distribution n2 degrees of freedom. It is also required that X and Y are statistically independent of each other.
It is the distribution of the test statistic in analysis of variance problems when the null hypothesis is false. The noncentral F-distribution is used to find the power function of such a test.
Occurrence and specification
If
is a noncentral chi-squared random variable with noncentrality parameter
and
degrees of freedom, and
is a chi-squared random variable with
degrees of freedom that is statistically independent of
, then
is a noncentral F-distributed random variable. The probability density function (pdf) for the noncentral F-distribution is[1]
when
and zero otherwise.
The degrees of freedom
and
are positive. The noncentrality parameter
is nonnegative.
The term
is the beta function, where
The cumulative distribution function for the noncentral F-distribution is
where
is the regularized incomplete beta function.
The mean and variance of the noncentral F-distribution are
and
Differential equation
The pdf of the noncentral F-distribution is a solution of the following differential equation:
Special cases
When λ = 0, the noncentral F-distribution becomes the F-distribution.
Related distributions
Z has a noncentral chi-squared distribution if
where F has a noncentral F-distribution.
Implementations
The noncentral F-distribution is implemented in the R language (e.g., pf function), in MATLAB (ncfcdf, ncfinv, ncfpdf, ncfrnd and ncfstat functions in the statistics toolbox) in Mathematica (NoncentralFRatioDistribution function), in NumPy (random.noncentral_f), and in Boost C++ Libraries.[2]
A collaborative wiki page implements an interactive online calculator, programmed in the R language, for the noncentral t, chi-squared, and F distributions, at the Institute of Statistics and Econometrics, School of Business and Economics, Humboldt-Universität zu Berlin.[3]
Notes
- ↑ S. Kay, Fundamentals of Statistical Signal Processing: Detection Theory, (New Jersey: Prentice Hall, 1998), p. 29.
- ↑ John Maddock, Paul A. Bristow, Hubert Holin, Xiaogang Zhang, Bruno Lalande, Johan Råde. "Noncentral F Distribution: Boost 1.39.0". Boost.org. Retrieved 20 August 2011.
- ↑ Sigbert Klinke (10 December 2008). "Comparison of noncentral and central distributions". Humboldt-Universität zu Berlin.
References
- Weisstein, Eric W.; et al. "Noncentral F-distribution". MathWorld. Wolfram Research, Inc. Retrieved 20 August 2011.




![\operatorname{E}\left[F\right]=
\begin{cases}
\frac{\nu_2(\nu_1+\lambda)}{\nu_1(\nu_2-2)} &\nu_2>2\\
\text{Does not exist} &\nu_2\le2\\
\end{cases}](../I/m/5e4f85b35cfcee966596d5ae0fc44055.png)
![\operatorname{Var}\left[F\right]=
\begin{cases}
2\frac{(\nu_1+\lambda)^2+(\nu_1+2\lambda)(\nu_2-2)}{(\nu_2-2)^2(\nu_2-4)}\left(\frac{\nu_2}{\nu_1}\right)^2
&\nu_2>4\\
\text{Does not exist}
&\nu_2\le4.\\
\end{cases}](../I/m/4ab400036c3f32bf2de1a083f26d0468.png)
![\left\{\begin{array}{l}
4 x \left(\nu _2+\nu_1 x\right){}^2 f''(x)+f'(x) \left(-2 \nu _2^2 \nu _1+8 \nu _2^2+
16 \nu _1^2 x^2+4 \nu_2 \nu_1^2 x^2-2 \lambda \nu_2 \nu _1 x-2 \nu_2 \nu_1^2 x+4 \nu_2^2
\nu_1 x+24 \nu_2 \nu_1 x\right)+\nu_1 \left(\nu_2+2\right) f(x) \left(-\lambda
\nu_2-\nu_2 \nu_1+4 \nu_2+4 \nu_1 x+\nu_2 \nu_1 x\right)=0, \\[12pt]
f(1)=\frac{e^{-\lambda /2} \nu_1^{\frac{\nu_1}{2}} \nu_2^{\frac{\nu _2}{2}}
\left(\nu _1+\nu _2\right){}^{\frac{1}{2} \left(-\nu _1-\nu _2\right)} \,
_1F_1\left(\frac{1}{2} \left(\nu _1+\nu _2\right);\frac{\nu_1}{2};
\frac{\lambda \nu _1}{2 \left(\nu _1+\nu _2\right)}\right)}{B\left(\frac{\nu_1}{2},
\frac{\nu_2}{2}\right)}, \\[12pt]
f'(1)=\frac{e^{-\lambda/2} \nu_1^{\frac{\nu_1}{2}} \nu_2^{\frac{\nu_2}{2}}
\left(\nu _1+\nu _2\right){}^{\frac{1}{2} \left(-\nu_1-\nu_2-2\right)}
\left(\nu_2 \left(\lambda \, _1F_1\left(\frac{1}{2} \left(\nu_1+\nu_2+2\right);
\frac{1}{2} \left(\nu_1+2\right);\frac{\lambda \nu_1}{2 \left(\nu_1+\nu_2\right)}\right)-2 \,
_1F_1\left(\frac{1}{2} \left(\nu_1+\nu_2\right);\frac{\nu_1}{2};
\frac{\lambda\nu_1}{2 \left(\nu_1+\nu _2\right)}\right)\right)-2 \nu _1 \,
_1F_1\left(\frac{1}{2} \left(\nu_1+\nu_2\right);\frac{\nu_1}{2};
\frac{\lambda \nu_1}{2 \left(\nu_1+\nu_2\right)}\right)\right)}
{2 B\left(\frac{\nu_1}{2},\frac{\nu_2}{2}\right)}
\end{array}\right\}](../I/m/0126e04c79f8e1cb098aedd51a0b5332.png)
