Antiparasitic
Antiparasitics are a class of medications which are indicated for the treatment of parasitic diseases, such as those caused by helminths,[1] amoeba,[2] ectoparasites, parasitic fungi,[3] and protozoa,[1] among others. Antiparasitics target the parasitic agents of the infections by destroying them or inhibiting their growth;[4] they are usually effective against a limited number of parasites within a particular class. Antiparasitics are one of the antimicrobial drugs which include antibiotics that target bacteria, and antifungals that target fungi. They may be administered orally, intravenously or topically.[4]
Broad-spectrum antiparasitics, analogous to broad-spectrum antibiotics for bacteria, are antiparasitic drugs with efficacy in treating a wide range of parasitic infections caused by parasites from different classes.
Types
Broad-spectrum
Antiprotozoals
Main article:
Antiprotozoal
Antihelminthic
Main article:
Antihelminthic
Antinematodes
Ancylostoma caninum, a type of
hookworm, attached to the intestinal mucosa.
Anticestodes
Antitrematodes
Antiamoebics
Antifungals
Medical uses
Antiparasitics treat parasitic diseases, which impact an estimated 2 billion people.[1]
Administration
Antiparastics may be given via a variety of routes depending on the specific medication, including oral, topical, and intravenous.[4]
Drug development history
Early antiparasitics were ineffective, frequently toxic to patients, and difficult to administer due to the difficulty in distinguishing between the host and the parasite.[4]
Between 1975 and 1999 only 13 of 1,300 new drugs were antiparasitics, which raised concerns that insufficient incentives existed to drive development of new treatments for diseases that disproportionately target low-income countries. This led to new public sector and public-private partnerships (PPPs), including investment by the Bill and Melinda Gates Foundation. Between 2000 and 2005, twenty new antiparasitic agents were developed or in development. In 2005, a new antimalarial cost approximately $300 million to develop with a 50% failure rate.[10]
See also
References
- 1 2 3 Kappagoda, Shanthi; Singh, Upinder; Blackburn, Brian G. (2011). "Antiparasitic Therapy". Mayo Clin Proc. 6 (86): 561–583. doi:10.4065/mcp.2011.0203. PMC 3104918. PMID 21628620.
- ↑ Kusrini E, Hashim F, Azmi WN, Amin NM, Estuningtyas A (2016). "A novel antiamoebic agent against Acanthamoeba sp. - A causative agent for eye keratitis infection". Spectrochim Acta A Mol Biomol Spectrosc 153: 714–21. doi:10.1016/j.saa.2015.09.021. PMID 26474244.
- 1 2 Molina JM, Tourneur M, Sarfati C, et al. (June 2002). "Fumagillin treatment of intestinal microsporidiosis". N. Engl. J. Med. 346 (25): 1963–9. doi:10.1056/NEJMoa012924. PMID 12075057.
- 1 2 3 4 "ANTIPARASITICS". Purdue University Cytology Laboratories. Purdue Research Foundation. Retrieved 2015-08-30.
- ↑ Di Santo N, Ehrisman J (2013). "Research perspective: potential role of nitazoxanide in ovarian cancer treatment. Old drug, new purpose?". Cancers (Basel) 5 (3): 1163–1176. doi:10.3390/cancers5031163. PMC 3795384. PMID 24202339.
Nitazoxanide [NTZ: 2-acetyloxy-N-(5-nitro-2-thiazolyl)benzamide] is a thiazolide antiparasitic agent with excellent activity against a wide variety of protozoa and helminths. ... Nitazoxanide (NTZ) is a main compound of a class of broad-spectrum anti-parasitic compounds named thiazolides. It is composed of a nitrothiazole-ring and a salicylic acid moiety which are linked together by an amide bond ... NTZ is generally well tolerated, and no significant adverse events have been noted in human trials [13]. ... In vitro, NTZ and tizoxanide function against a wide range of organisms, including the protozoal species Blastocystis hominis, C. parvum, Entamoeba histolytica, G. lamblia and Trichomonas vaginalis [13]
- ↑ White CA (2004). "Nitazoxanide: a new broad spectrum antiparasitic agent". Expert Rev Anti Infect Ther 2 (1): 43–9. doi:10.1586/14787210.2.1.43. PMID 15482170.
- ↑ Hemphill A, Mueller J, Esposito M (2006). "Nitazoxanide, a broad-spectrum thiazolide anti-infective agent for the treatment of gastrointestinal infections". Expert Opin Pharmacother 7 (7): 953–64. doi:10.1517/14656566.7.7.953. PMID 16634717.
- ↑ Anderson, V. R.; Curran, M. P. (2007). "Nitazoxanide: A review of its use in the treatment of gastrointestinal infections". Drugs 67 (13): 1947–1967. doi:10.2165/00003495-200767130-00015. PMID 17722965.
- ↑ Lanternier F, Boutboul D, Menotti J, et al. (February 2009). "Microsporidiosis in solid organ transplant recipients: two Enterocytozoon bieneusi cases and review". Transpl Infect Dis 11 (1): 83–8. doi:10.1111/j.1399-3062.2008.00347.x. PMID 18803616.
- ↑ Pink, Richard; Hudson, Alan; Mouries, Marie-Annick; Bendig, Mary (September 2005). "Opportunities and Challenges in Antiparasitic Drug Discovery". Nature 4: 727–740. doi:10.1038/nrd1824.