UBA1
Ubiquitin-like modifier activating enzyme 1 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||
Identifiers | |||||||||||||
Symbols | UBA1 ; A1S9; A1S9T; A1ST; AMCX1; GXP1; POC20; SMAX2; UBA1A; UBE1; UBE1X | ||||||||||||
External IDs | OMIM: 314370 MGI: 98890 HomoloGene: 22002 GeneCards: UBA1 Gene | ||||||||||||
EC number | 6.3.2.19 | ||||||||||||
| |||||||||||||
Orthologs | |||||||||||||
Species | Human | Mouse | |||||||||||
Entrez | 7317 | 22201 | |||||||||||
Ensembl | ENSG00000130985 | ENSMUSG00000001924 | |||||||||||
UniProt | P22314 | Q02053 | |||||||||||
RefSeq (mRNA) | NM_003334 | NM_001136085 | |||||||||||
RefSeq (protein) | NP_003325 | NP_001129557 | |||||||||||
Location (UCSC) |
Chr X: 47.05 – 47.07 Mb |
Chr X: 20.66 – 20.68 Mb | |||||||||||
PubMed search | |||||||||||||
Ubiquitin-like modifier activating enzyme 1 (UBA1) is an enzyme which in humans is encoded by the UBA1 gene.[1][2] UBA1 participates in ubiquitination and the NEDD8 pathway for protein folding and degradation, among many other biological processes.[1][3] This protein has been linked to X-linked spinal muscular atrophy type 2, neurodegenerative diseases, and cancers.[4][5]
Function
The protein encoded by this gene catalyzes the first step in ubiquitin conjugation, or ubiquitination, to mark cellular proteins for degradation. Specifically, UBA1 catalyzes the ATP-dependent adenylation of ubiquitin (Ub), thereby forming a thioester bond between the two. It also continues to participate in subsequent steps of ubiquination as a Ub carrier.[4][5][6] UBA1 is one of only two human ubiquitin-activating enzymes (E1), the other being UBA6, and thus is largely responsible for protein ubiquitination in humans.[4][5][6] Through its central role in ubiquitination, UBA1 has been linked to cell cycle regulation, endocytosis, signal transduction, apoptosis, DNA damage repair, and transcriptional regulation.[4][5] Additionally, UBE1 helps regulate the NEDD8 pathway, thus implicating it in protein folding, as well as mitigating the depletion of ubiquitin levels during stress.[3]
Clinical significance
Mutations in UBA1 are associated with X-linked spinal muscular atrophy type 2.[1] UBA1 has also been implicated in neurodegenerative diseases and cancer and, thus, presents a promising a therapeutic target for inhibiting tumor growth. However, because UBA1 is involved in multiple biological processes, there are concerns that inhibiting UBA1 would also damage normal cells. Nonetheless, preclinical testing of a UBA1 inhibitor in mice with leukemia revealed no additional toxic effects to normal cells, and the success of other drugs targeting pleiotropic targets likewise support the safety of targeting UBA1 for cancer treatment[4][5] Moreover, the UBA1 inhibitors Largazole, as well as its ketone and ester derivatives, preferentially targets cancer over normal cells by specifically by blocking the ligation of Ub and UBA1 during the adenylation step of the E1 pathway. MLN4924, a NEDD8-activating enzyme inhibitor functioning according to similar mechanisms, is currently undergoing phase I clinical trials.[5]
Interactions
UBA1 has been shown to interact with:
- UBC13.[4]
References
- 1 2 3 "Entrez Gene: ubiquitin-like modifier activating enzyme 1".
- ↑ Kudo M, Sugasawa K, Hori T, Enomoto T, Hanaoka F, Ui M (Jan 1991). "Human ubiquitin-activating enzyme (E1): compensation for heat-labile mouse E1 and its gene localization on the X chromosome". Experimental Cell Research 192 (1): 110–7. doi:10.1016/0014-4827(91)90164-P. PMID 1845793.
- 1 2 Leidecker O, Matic I, Mahata B, Pion E, Xirodimas DP (Mar 2012). "The ubiquitin E1 enzyme Ube1 mediates NEDD8 activation under diverse stress conditions". Cell Cycle 11 (6): 1142–50. doi:10.4161/cc.11.6.19559. PMID 22370482.
- 1 2 3 4 5 6 Correale S, de Paola I, Morgillo CM, Federico A, Zaccaro L, Pallante P, Galeone A, Fusco A, Pedone E, Luque FJ, Catalanotti B (2014). "Structural model of the hUbA1-UbcH10 quaternary complex: in silico and experimental analysis of the protein-protein interactions between E1, E2 and ubiquitin". PLOS ONE 9 (11): e112082. doi:10.1371/journal.pone.0112082. PMID 25375166.
- 1 2 3 4 5 6 Ungermannova D, Parker SJ, Nasveschuk CG, Wang W, Quade B, Zhang G, Kuchta RD, Phillips AJ, Liu X (2012). "Largazole and its derivatives selectively inhibit ubiquitin activating enzyme (e1)". PLOS ONE 7 (1): e29208. doi:10.1371/journal.pone.0029208. PMID 22279528.
- 1 2 Moudry P, Lukas C, Macurek L, Hanzlikova H, Hodny Z, Lukas J, Bartek J (Apr 2012). "Ubiquitin-activating enzyme UBA1 is required for cellular response to DNA damage". Cell Cycle 11 (8): 1573–82. doi:10.4161/cc.19978. PMID 22456334.
Further reading
- Nouspikel T, Hanawalt PC (Oct 2006). "Impaired nucleotide excision repair upon macrophage differentiation is corrected by E1 ubiquitin-activating enzyme". Proceedings of the National Academy of Sciences of the United States of America 103 (44): 16188–93. doi:10.1073/pnas.0607769103. PMC 1621053. PMID 17060614.
- Jin J, Li X, Gygi SP, Harper JW (Jun 2007). "Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging". Nature 447 (7148): 1135–8. doi:10.1038/nature05902. PMID 17597759.
- Xia T, Dimitropoulou C, Zeng J, Antonova GN, Snead C, Venema RC, Fulton D, Qian S, Patterson C, Papapetropoulos A, Catravas JD (Nov 2007). "Chaperone-dependent E3 ligase CHIP ubiquitinates and mediates proteasomal degradation of soluble guanylyl cyclase". American Journal of Physiology. Heart and Circulatory Physiology 293 (5): H3080–7. doi:10.1152/ajpheart.00579.2007. PMID 17873020.
- Pridgeon JW, Webber EA, Sha D, Li L, Chin LS (Jan 2009). "Proteomic analysis reveals Hrs ubiquitin-interacting motif-mediated ubiquitin signaling in multiple cellular processes". The FEBS Journal 276 (1): 118–31. doi:10.1111/j.1742-4658.2008.06760.x. PMC 2647816. PMID 19019082.
- Beausoleil SA, Villén J, Gerber SA, Rush J, Gygi SP (Oct 2006). "A probability-based approach for high-throughput protein phosphorylation analysis and site localization". Nature Biotechnology 24 (10): 1285–92. doi:10.1038/nbt1240. PMID 16964243.
- Malakhova OA, Zhang DE (Apr 2008). "ISG15 inhibits Nedd4 ubiquitin E3 activity and enhances the innate antiviral response". The Journal of Biological Chemistry 283 (14): 8783–7. doi:10.1074/jbc.C800030200. PMC 2276364. PMID 18287095.
- Anindya R, Aygün O, Svejstrup JQ (Nov 2007). "Damage-induced ubiquitylation of human RNA polymerase II by the ubiquitin ligase Nedd4, but not Cockayne syndrome proteins or BRCA1". Molecular Cell 28 (3): 386–97. doi:10.1016/j.molcel.2007.10.008. PMID 17996703.
- Umebayashi K, Stenmark H, Yoshimori T (Aug 2008). "Ubc4/5 and c-Cbl continue to ubiquitinate EGF receptor after internalization to facilitate polyubiquitination and degradation". Molecular Biology of the Cell 19 (8): 3454–62. doi:10.1091/mbc.E07-10-0988. PMC 2488299. PMID 18508924.
- Barbe L, Lundberg E, Oksvold P, Stenius A, Lewin E, Björling E, Asplund A, Pontén F, Brismar H, Uhlén M, Andersson-Svahn H (Mar 2008). "Toward a confocal subcellular atlas of the human proteome". Molecular & Cellular Proteomics 7 (3): 499–508. doi:10.1074/mcp.M700325-MCP200. PMID 18029348.
- Lim J, Hao T, Shaw C, Patel AJ, Szabó G, Rual JF, Fisk CJ, Li N, Smolyar A, Hill DE, Barabási AL, Vidal M, Zoghbi HY (May 2006). "A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration". Cell 125 (4): 801–14. doi:10.1016/j.cell.2006.03.032. PMID 16713569.
- Gallegos JR, Litersky J, Lee H, Sun Y, Nakayama K, Nakayama K, Lu H (Jan 2008). "SCF TrCP1 activates and ubiquitylates TAp63gamma". The Journal of Biological Chemistry 283 (1): 66–75. doi:10.1074/jbc.M704686200. PMID 17965458.
- Carbia-Nagashima A, Gerez J, Perez-Castro C, Paez-Pereda M, Silberstein S, Stalla GK, Holsboer F, Arzt E (Oct 2007). "RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia". Cell 131 (2): 309–23. doi:10.1016/j.cell.2007.07.044. PMID 17956732.
- Ramser J, Ahearn ME, Lenski C, Yariz KO, Hellebrand H, von Rhein M, Clark RD, Schmutzler RK, Lichtner P, Hoffman EP, Meindl A, Baumbach-Reardon L (Jan 2008). "Rare missense and synonymous variants in UBE1 are associated with X-linked infantile spinal muscular atrophy". American Journal of Human Genetics 82 (1): 188–93. doi:10.1016/j.ajhg.2007.09.009. PMC 2253959. PMID 18179898.
- Zenke-Kawasaki Y, Dohi Y, Katoh Y, Ikura T, Ikura M, Asahara T, Tokunaga F, Iwai K, Igarashi K (Oct 2007). "Heme induces ubiquitination and degradation of the transcription factor Bach1". Molecular and Cellular Biology 27 (19): 6962–71. doi:10.1128/MCB.02415-06. PMC 2099246. PMID 17682061.
- Nicassio F, Corrado N, Vissers JH, Areces LB, Bergink S, Marteijn JA, Geverts B, Houtsmuller AB, Vermeulen W, Di Fiore PP, Citterio E (Nov 2007). "Human USP3 is a chromatin modifier required for S phase progression and genome stability". Current Biology 17 (22): 1972–7. doi:10.1016/j.cub.2007.10.034. PMID 17980597.
- Su ZL, Mo XL, Feng ZY, Lin HL, Ding YG (Sep 2008). "UBE1 expression in extranodal NK/T cell lymphoma, nasal type". Leukemia & Lymphoma 49 (9): 1821–2. doi:10.1080/10428190802187171. PMID 18661401.
- Wang X, Shi Y, Wang J, Huang G, Jiang X (Sep 2008). "Crucial role of the C-terminus of PTEN in antagonizing NEDD4-1-mediated PTEN ubiquitination and degradation". The Biochemical Journal 414 (2): 221–9. doi:10.1042/BJ20080674. PMID 18498243.
- Bruce MC, Kanelis V, Fouladkou F, Debonneville A, Staub O, Rotin D (Oct 2008). "Regulation of Nedd4-2 self-ubiquitination and stability by a PY motif located within its HECT-domain". The Biochemical Journal 415 (1): 155–63. doi:10.1042/BJ20071708. PMID 18498246.
- Zhou W, Zhu P, Wang J, Pascual G, Ohgi KA, Lozach J, Glass CK, Rosenfeld MG (Jan 2008). "Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation". Molecular Cell 29 (1): 69–80. doi:10.1016/j.molcel.2007.11.002. PMC 2327256. PMID 18206970.
External links
- UBE1 Protein, human at the US National Library of Medicine Medical Subject Headings (MeSH)
This article incorporates text from the United States National Library of Medicine, which is in the public domain.
|