Soybean

"Soy" redirects here. For other uses, see Soy (disambiguation).
Soybean
Scientific classification
Kingdom: Plantae
(unranked): Angiosperms
(unranked): Eudicots
(unranked): Rosids
Order: Fabales
Family: Fabaceae
Subfamily: Faboideae
Genus: Glycine
Species: G. max
Binomial name
Glycine max
(L.) Merr.
Synonyms[1]
  • Dolichos soja L.
  • Glycine angustifolia Miq.
  • Glycine gracilis Skvortsov
  • Glycine hispida (Moench) Maxim.
  • Glycine soja sensu auct.
  • Phaseolus max L.
  • Soja angustifolia Miq.
  • Soja hispida Moench
  • Soja japonica Savi
  • Soja max (L.) Piper
  • Soja soja H. Karst.
  • Soja viridis Savi

The soybean in North America, also called the soya bean (Glycine max),[2] is a species of legume native to East Asia, widely grown for its edible bean which has numerous uses. The plant is classed as an oilseed rather than a pulse by the UN Food and Agriculture Organization (FAO).

Fat-free (defatted) soybean meal is a significant and cheap source of protein for animal feeds and many packaged meals; soy vegetable oil is another product of processing the soybean crop. For example, soybean products such as textured vegetable protein (TVP) are ingredients in many meat and dairy analogues.[3] Soybeans produce significantly more protein per acre than most other uses of land.[4]

Traditional nonfermented food uses of soybeans include soy milk, from which tofu and tofu skin are made. Fermented foods include soy sauce, fermented bean paste, natto, and tempeh, among others. The oil is used in many industrial applications. The main producers of soy are the United States (36%), Brazil (36%), Argentina (18%), China (5%) and India (4%).[5][6] The beans contain significant amounts of phytic acid, alpha-linolenic acid, and isoflavones.

Name

The plant is known as the "large bean" in Chinese, Japanese, and Korean (Chinese: 大豆; pinyin: dàdòu; Japanese romaji: daizu; Korean romaja: daedu) or "yellow bean" (Chinese: 黄豆; pinyin: huángdòu). Both the immature soybean and its dish are called edamame in Japan,[7][8] but in English, edamame refers only to a specific dish. The genus name, Glycine, is the same as a simple amino acid.

Since the early twentieth century soybeans have been called the 'golden bean' or 'miracle bean' in America.[9] The English words "soy" and "soya" are ultimately derived from the Japanese pronunciation of shōyu (醤油), the Sino-Japanese word for soy sauce, through the German adaptation of the same word, soja.[10]

Classification

Varieties of soybeans are used for many purposes.

The genus Glycine Willd. is divided into two subgenera, Glycine and Soja. The subgenus Soja (Moench) F.J. Herm. includes the cultivated soybean, Glycine max (L.) Merr., and the wild soybean, Glycine soja Sieb. & Zucc. Both species are annuals. Glycine soja is the wild ancestor of Glycine max, and grows wild in China, Japan, Korea, Taiwan and Russia.[11] The subgenus Glycine consists of at least 25 wild perennial species: for example, Glycine canescens F.J. Herm. and G. tomentella Hayata, both found in Australia and Papua New Guinea.[12][13] Perennial soybean (Neonotonia wightii) originated in Africa and is now a widespread pasture crop in the tropics.[14][15][16]

Like some other crops of long domestication, the relationship of the modern soybean to wild-growing species can no longer be traced with any degree of certainty. It is a cultural variety with a very large number of cultivars.

Description

Like most plants, soybeans grow in distinct morphological stages as they develop from seeds into fully mature plants.

Germination

The first of stage of growth is germination, a process that first becomes apparent as a seed's radicle emerges.[17] This is the first stage of root growth and occurs within the first 48 hours under ideal growing conditions. The first photosynthetic structures, the cotyledons, develop from the hypocotyl, the first plant structure to emerge from the soil. These cotyledons both act as leaves and as a source of nutrients for the immature plant, providing the seedling nutrition for its first 7 to 10 days.[17]

Maturation

The first true leaves develop as a pair of single blades.[17] Subsequent to this first pair, mature nodes form compound leaves with three blades. Mature trifoliolate leaves, having three to four leaflets per leaf, are often between 6–15 cm (2.4–5.9 in) long and 2–7 cm (0.79–2.76 in) broad. Under ideal conditions, stem growth continues, producing new nodes every four days. Before flowering, roots can grow 1.9 cm (0.75 inch) per day. If rhizobia are present, root nodulation begins by the time the third node appears. Nodulation typically continues for 8 weeks before the symbiotic infection process stabilizes.[17] The final characteristics of a soybean plant are variable, with factors such as genetics and climate affecting its form; however, the plant rarely exceeds 2.0 m (6.6 ft) in height.

Flowering

Flowering is triggered by day length, often beginning once days become shorter than 12.8 hours.[17] This trait is highly variable however, with different varieties reacting differently to changing day length. Soybeans form inconspicuous, self-fertile flowers which are borne in the axil of the leaf and are white, pink or purple. Depending of the soybean variety, node growth may cease once flowering begins. Strains that continue nodal development after flowering are termed "indeterminates" and are best suited to climates with longer growing seasons.[17] Often soybeans drop their leaves before the seeds are fully mature.

Small, purple soybean flowers

The fruit is a hairy pod that grows in clusters of three to five, each pod is 3–8 cm long (1–3 in) and usually contains two to four (rarely more) seeds 5–11 mm in diameter. Soybeans occur in various sizes, and in many hull or seed coat colors, including black, brown, blue, yellow, green and mottled.

Seed resilience

The hull of the mature bean is hard, water-resistant, and protects the cotyledon and hypocotyl (or "germ") from damage. If the seed coat is cracked, the seed will not germinate. The scar, visible on the seed coat, is called the hilum (colors include black, brown, buff, gray and yellow) and at one end of the hilum is the micropyle, or small opening in the seed coat which can allow the absorption of water for sprouting.

Remarkably, seeds such as soybeans containing very high levels of protein can undergo desiccation, yet survive and revive after water absorption. A. Carl Leopold, son of Aldo Leopold, began studying this capability at the Boyce Thompson Institute for Plant Research at Cornell University in the mid-1980s. He found soybeans and corn to have a range of soluble carbohydrates protecting the seed's cell viability.[18] Patents were awarded to him in the early 1990s on techniques for protecting "biological membranes" and proteins in the dry state.

Nitrogen-fixing ability

Many legumes (alfalfa, clover, lupins, peas, beans, lentils, soybeans, peanuts and others) contain symbiotic bacteria called Rhizobia within nodules of their root systems. These bacteria have the special ability of fixing nitrogen from atmospheric, molecular nitrogen (N2) into ammonia (NH3).[19] The chemical reaction is:

N2 + 8 H+ + 8 e → 2 NH3 + H2

Ammonia is then converted to another form, ammonium (NH4+), usable by (some) plants by the following reaction:

NH3 + H+ → NH4+

This arrangement means that the root nodules are sources of nitrogen for legumes, making them relatively rich in plant proteins.

Chemical composition

Together, protein and soybean oil content account for 56% of dry soybeans by weight (36% protein and 20% fat, table). The remainder consists of 30% carbohydrates, 9% water and 5% ash (table). Soybeans comprise approximately 8% seed coat or hull, 90% cotyledons and 2% hypocotyl axis or germ.

Nutrition

Further information: Soy protein
Soybean, mature seeds, raw
Nutritional value per 100 g (3.5 oz)
Energy 1,866 kJ (446 kcal)
30.16 g
Sugars 7.33 g
Dietary fiber 9.3 g
19.94 g
Saturated 2.884 g
Monounsaturated 4.404 g
Polyunsaturated 11.255 g
36.49 g
Tryptophan 0.591 g
Threonine 1.766 g
Isoleucine 1.971 g
Leucine 3.309 g
Lysine 2.706 g
Methionine 0.547 g
Cystine 0.655 g
Phenylalanine 2.122 g
Tyrosine 1.539 g
Valine 2.029 g
Arginine 3.153 g
Histidine 1.097 g
Alanine 1.915 g
Aspartic acid 5.112 g
Glutamic acid 7.874 g
Glycine 1.880 g
Proline 2.379 g
Serine 2.357 g
Vitamins
Vitamin A equiv.
(0%)

1 μg

Thiamine (B1)
(76%)

0.874 mg

Riboflavin (B2)
(73%)

0.87 mg

Niacin (B3)
(11%)

1.623 mg

Pantothenic acid (B5)
(16%)

0.793 mg

Vitamin B6
(29%)

0.377 mg

Folate (B9)
(94%)

375 μg

Vitamin B12
(0%)

0 μg

Choline
(24%)

115.9 mg

Vitamin C
(7%)

6.0 mg

Vitamin E
(6%)

0.85 mg

Vitamin K
(45%)

47 μg

Minerals
Calcium
(28%)

277 mg

Iron
(121%)

15.7 mg

Magnesium
(79%)

280 mg

Manganese
(120%)

2.517 mg

Phosphorus
(101%)

704 mg

Potassium
(38%)

1797 mg

Sodium
(0%)

2 mg

Zinc
(51%)

4.89 mg

Other constituents
Water 8.54 g

Percentages are roughly approximated using US recommendations for adults.

Soybeans are an exceptional source of essential nutrients, providing in a 100 gram serving (raw, for reference) high contents of the Daily Value (DV) especially for protein (36% DV), dietary fiber (37%), iron (121%), manganese (120%), phosphorus (101%) and several B vitamins, including folate (94%) (table). High contents also exist for vitamin K, magnesium, zinc and potassium (table).

A 100 gram serving of soybeans supplies 446 calories and 11 grams of polyunsaturated fat (table).

For human consumption, soybeans must be cooked with "wet" heat to destroy the trypsin inhibitors (serine protease inhibitors). Raw soybeans, including the immature green form, are toxic to all monogastric animals.[20]

Protein

Most soy protein is a relatively heat-stable storage protein. This heat stability enables soy food products requiring high temperature cooking, such as tofu, soy milk and textured vegetable protein (soy flour) to be made.

Soybeans are considered by many agencies to be a source of complete protein.[21] A complete protein is one that contains significant amounts of all the essential amino acids that must be provided to the human body because of the body's inability to synthesize them. For this reason, soy is a good source of protein, amongst many others, for vegetarians and vegans or for people who want to reduce the amount of meat they eat. According to the US Food and Drug Administration:

Soy protein products can be good substitutes for animal products because, unlike some other beans, soy offers a 'complete' protein profile. ... Soy protein products can replace animal-based foods—which also have complete proteins but tend to contain more fat, especially saturated fat—without requiring major adjustments elsewhere in the diet.
[21]

The gold standard for measuring protein quality, since 1990, is the Protein Digestibility Corrected Amino Acid Score (PDCAAS) and by this criterion soy protein is the nutritional equivalent of meat, eggs, and casein for human growth and health. Soybean protein isolate has a biological value of 74, whole soybeans 96, soybean milk 91, and eggs 97.[22]

Soy protein is essentially identical to the protein of other legume seeds and pulses.[23][24][25] Moreover, soybeans can produce at least twice as much protein per acre than any other major vegetable or grain crop besides hemp, five to 10 times more protein per acre than land set aside for grazing animals to make milk, and up to 15 times more protein per acre than land set aside for meat production.[4]

Carbohydrates

The principal soluble carbohydrates of mature soybeans are the disaccharide sucrose (range 2.5–8.2%), the trisaccharide raffinose (0.1–1.0%) composed of one sucrose molecule connected to one molecule of galactose, and the tetrasaccharide stachyose (1.4 to 4.1%) composed of one sucrose connected to two molecules of galactose.[26] While the oligosaccharides raffinose and stachyose protect the viability of the soybean seed from desiccation (see above section on physical characteristics) they are not digestible sugars, so contribute to flatulence and abdominal discomfort in humans and other monogastric animals, comparable to the disaccharide trehalose. Undigested oligosaccharides are broken down in the intestine by native microbes, producing gases such as carbon dioxide, hydrogen, and methane.

Since soluble soy carbohydrates are found in the whey and are broken down during fermentation, soy concentrate, soy protein isolates, tofu, soy sauce, and sprouted soybeans are without flatus activity. On the other hand, there may be some beneficial effects to ingesting oligosaccharides such as raffinose and stachyose, namely, encouraging indigenous bifidobacteria in the colon against putrefactive bacteria.

The insoluble carbohydrates in soybeans consist of the complex polysaccharides cellulose, hemicellulose, and pectin. The majority of soybean carbohydrates can be classed as belonging to dietary fiber.

Fats

Raw soybeans are 20% fat, including saturated fat (3%), monounsaturated fat (4%) and polyunsaturated fat, mainly as linoleic acid (table).

Within soybean oil or the lipid portion of the seed is contained four phytosterols: stigmasterol, sitosterol, campesterol, and brassicasterol accounting for about 2.5% of the lipid fraction; and which can be converted into steroid hormones.[27]

Comparison to other major staple foods

The following table shows the nutrient content of green soybean and other major staple foods, each in respective raw form. Raw soybeans, however, aren't edible and cannot be digested. These must be sprouted, or prepared and cooked for human consumption. In sprouted and cooked form, the relative nutritional and anti-nutritional contents of each of these grains is remarkably different from that of raw form of these grains reported in this table. The nutritional value of soybean and each cooked staple depends on the processing and the method of cooking: boiling, frying, roasting, baking, etc.

Nutrient content of major staple foods[28]
STAPLE: RDA Maize / Corn[A] Rice (white)[B] Rice (brown)[I] Wheat[C] Potato[D] Cassava[E] Soybean (Green)[F] Sweet potato[G] Sorghum[H] Yam[Y] Plantain[Z]
Component (per 100g portion) Amount Amount Amount Amount Amount Amount Amount Amount Amount Amount Amount Amount
Water (g) 3000 10 12 10 13 79 60 68 77 9 70 65
Energy (kJ) 1528 1528 1549 1369 322 670 615 360 1419 494 511
Protein (g) 50 9.4 7.1 7.9 12.6 2.0 1.4 13.0 1.6 11.3 1.5 1.3
Fat (g) 4.74 0.66 2.92 1.54 0.09 0.28 6.8 0.05 3.3 0.17 0.37
Carbohydrates (g) 130 74 80 77 71 17 38 11 20 75 28 32
Fiber (g) 30 7.3 1.3 3.5 12.2 2.2 1.8 4.2 3 6.3 4.1 2.3
Sugar (g) 0.64 0.12 0.85 0.41 0.78 1.7 0 4.18 0 0.5 15
Calcium (mg) 1000 7 28 23 29 12 16 197 30 28 17 3
Iron (mg) 8 2.71 0.8 1.47 3.19 0.78 0.27 3.55 0.61 4.4 0.54 0.6
Magnesium (mg) 400 127 25 143 126 23 21 65 25 0 21 37
Phosphorus (mg) 700 210 115 333 288 57 27 194 47 287 55 34
Potassium (mg) 4700 287 115 223 363 421 271 620 337 350 816 499
Sodium (mg) 1500 35 5 7 2 6 14 15 55 6 9 4
Zinc (mg) 11 2.21 1.09 2.02 2.65 0.29 0.34 0.99 0.3 0 0.24 0.14
Copper (mg) 0.9 0.31 0.22 0.43 0.11 0.10 0.13 0.15 - 0.18 0.08
Manganese (mg) 2.3 0.49 1.09 3.74 3.99 0.15 0.38 0.55 0.26 - 0.40 -
Selenium (μg) 55 15.5 15.1 70.7 0.3 0.7 1.5 0.6 0 0.7 1.5
Vitamin C (mg) 90 0 0 0 0 19.7 20.6 29 2.4 0 17.1 18.4
Thiamin (B1)(mg) 1.2 0.39 0.07 0.40 0.30 0.08 0.09 0.44 0.08 0.24 0.11 0.05
Riboflavin (B2)(mg) 1.3 0.20 0.05 0.09 0.12 0.03 0.05 0.18 0.06 0.14 0.03 0.05
Niacin (B3) (mg) 16 3.63 1.6 5.09 5.46 1.05 0.85 1.65 0.56 2.93 0.55 0.69
Pantothenic acid (B5) (mg) 5 0.42 1.01 1.49 0.95 0.30 0.11 0.15 0.80 - 0.31 0.26
Vitamin B6 (mg) 1.3 0.62 0.16 0.51 0.3 0.30 0.09 0.07 0.21 - 0.29 0.30
Folate Total (B9) (μg) 400 19 8 20 38 16 27 165 11 0 23 22
Vitamin A (IU) 5000 214 0 0 9 2 13 180 14187 0 138 1127
Vitamin E, alpha-tocopherol (mg) 15 0.49 0.11 0.59 1.01 0.01 0.19 0 0.26 0 0.39 0.14
Vitamin K1 (μg) 120 0.3 0.1 1.9 1.9 1.9 1.9 0 1.8 0 2.6 0.7
Beta-carotene (μg) 10500 97 0 5 1 8 0 8509 0 83 457
Lutein+zeaxanthin (μg) 1355 0 220 8 0 0 0 0 0 30
Saturated fatty acids (g) 0.67 0.18 0.58 0.26 0.03 0.07 0.79 0.02 0.46 0.04 0.14
Monounsaturated fatty acids (g) 1.25 0.21 1.05 0.2 0.00 0.08 1.28 0.00 0.99 0.01 0.03
Polyunsaturated fatty acids (g) 2.16 0.18 1.04 0.63 0.04 0.05 3.20 0.01 1.37 0.08 0.07
A corn, yellow B rice, white, long-grain, regular, raw, unenriched
C wheat, hard red winter D potato, flesh and skin, raw
E cassava, raw F soybeans, green, raw
G sweet potato, raw, unprepared H sorghum, raw
Y yam, raw Z plantains, raw
I rice, brown, long-grain, raw

Soy protein

All spermatophytes except for the grass/cereal family contain soybean-like 7S (vicilin) and/or 11S (legumin), {S denotes Svedberg, sedimentation coefficients} desiccation-tolerant seed storage globulin proteins. Oats and rice are anomalous in that they also contain a majority of soybean-like protein.[29] Cocoa, for example, contains the 7S globulin, which contributes to cocoa/chocolate taste and aroma;,[30][31][32] whereas coffee beans (coffee grounds) contain the 11S globulin responsible for coffee's aroma and flavor.[33][34]

Vicilin and legumin proteins belong to the cupin superfamily, a large and functionally diverse 'superfamily' of proteins that have a common origin and whose evolution can be followed from bacteria to eukaryotes including animals and higher plants.[35]

2S albumins form a major group of homologous storage proteins in many dicot species and in some monocots but not in grasses (cereals).[36] Soybeans contain a small but significant 2S storage protein.[37][38][39] 2S albumin are grouped in the prolamin superfamily.[40] Other allergenic proteins included in this 'superfamily' are the non-specific plant lipid transfer proteins, alpha amylase inhibitor, trypsin inhibitors, and prolamin storage proteins of cereals and grasses.[29]

Peanuts, for instance, contain 20% 2S albumin but only 6% 7S globulin and 74% 11S.[36] It is the high 2S albumin and low 7S globulin that is responsible for the relatively low lysine content of peanut protein compared to soy protein.

Cultivation

Further information: List of soybean diseases
Soybean output in 2013
Top Soybean producers
in 2014
(million metric tons)
 Brazil 90.0
 United States 89.5
 Argentina 52.6
 China 15.0
 India 9.8
 Paraguay 7.4
 Canada 4.3
 Uruguay 1.8
 Ukraine 1.68
 Bolivia 1.63
World total 249.0
Source:
UN Food & Agriculture Organisation
(FAO)

Soybeans are a globally important crop, providing oil and protein. In the United States, the bulk of the harvest is solvent-extracted with hexane, and the "toasted" defatted soymeal (50% protein) then makes possible the raising of farm animals (e.g. chicken, hog, turkey) on an industrial scale never before seen in human history. A very small proportion of the crop is consumed directly by humans. Soybean products do, however, appear in a large variety of processed foods.

During World War II, soybeans became important in both North America and Europe chiefly as substitutes for other protein foods and as a source of edible oil. During the war, the soybean was discovered as fertilizer by the United States Department of Agriculture. In the 1960–1 Dillon round of the General Agreement on Tariffs and Trade (GATT), the United States secured tariff-free access for its soybeans to the European market. In the 1960s, the United States exported over 90% of the world's soybeans.[41][42] By 2005, the top soybeans exporters were Argentina (39% of world soybean exports), United States (37%) and Brazil (16%), while top importers were China (41% of world soybean imports), European Union (22%), Japan (6%) and Mexico (6%).[43]

Cultivation is successful in climates with hot summers, with optimum growing conditions in mean temperatures of 20 to 30 °C (68 to 86 °F); temperatures of below 20 °C and over 40 °C (68 °F, 104 °F) stunt growth significantly. They can grow in a wide range of soils, with optimum growth in moist alluvial soils with a good organic content. Soybeans, like most legumes, perform nitrogen fixation by establishing a symbiotic relationship with the bacterium Bradyrhizobium japonicum (syn. Rhizobium japonicum; Jordan 1982). For best results, though, an inoculum of the correct strain of bacteria should be mixed with the soybean (or any legume) seed before planting. Modern crop cultivars generally reach a height of around 1 m (3.3 ft), and take 80–120 days from sowing to harvesting.

The U.S., Argentina, Brazil, China and India are the world's largest soybean producers and represent more than 90% of global soybean production.[44] The U.S. produced 75 million tons of soybeans in 2000, of which more than one-third was exported. In the 2010–2011 production year, this figure is expected to be over 90 million tons.[6]

The average worldwide yield for soybean crops, in 2010, was 2.5 tonnes per hectare. The three largest producers had an average nationwide soybean crop yields of about 3 tonnes per hectare. The most productive soybean farms in the world in 2010 were in Turkey, with a nationwide average farm yield of 3.7 tonnes per hectare.[45] The world record for soybean yield is 10.8 tonnes per hectare, demonstrated in 2010 by Kip Cullers, a farmer in Purdy, Missouri.[46] Kip Cullers claims the secret to his record breaking soybean crop yields year after year is attention to detail, proactive management style, irrigation, herbicides, keeping plants healthy and stress free for the entire growing season.

Environmental groups, such as Greenpeace and the WWF, have reported soybean cultivation and the probability of increased soybean cultivation in Brazil has destroyed huge areas of Amazon rainforest, and is encouraging further deforestation.[47][48][49]

American soil scientist Andrew McClung, who first showed that the ecologically biodiverse savannah of the Cerrado region of Brazil could grow profitable soybeans, was awarded the 2006 World Food Prize on October 19, 2006.[50][51] However, even correcting for poor soils soybeans were an unlikely cash crop for the Cerrado. Soy did not fare well in the low latitudes. More than the heat and humidity, it was a lack of seasons that hampered production. In the higher more northerly latitudes, flowering coincides with the summer solstice, when the plants reach their maximum height. The first soybeans planted in the Cerrado, however, flowered early and, deprived of long summer days, remained stunted. For soy agriculture to take root in Mato Grosso it was first necessary to develop a "tropical soybean"—one that would flower later, giving the plants more time to fully mature. The feat was accomplished after years of laborious crossbreeding by scientists within Embrapa, the respected research arm of the Brazilian Ministry of Agriculture.[52]

Human sewage sludge can be used as fertilizer to grow soybeans. Soybeans grown in sewage sludge likely contain elevated concentrations of metals.[53][54] Soybean plants are vulnerable to a wide range of bacterial diseases, fungal diseases, viral diseases and parasites. One important pest is the corn earworm moth, which is the most common and destructive pest of soybean growth in Virginia.[55]

History

Soybeans were a crucial crop in East Asia long before written records began.[56] There is evidence for soybean domestication between 9000 and 8600 BP (before present) in China, between 7000 BP and 5000 BP in Japan and 3000 BP in Korea.[57] They are now a major crop in the United States, Brazil, Argentina, India, and China. Prior to fermented products such as fermented black soybeans (douchi), jiang (Chinese miso), soy sauce, tempeh, natto, and miso, soy was considered sacred for its beneficial effects in crop rotation. Soy was introduced to Africa from China in the late 19th century, and is now widespread across the continent.

Asia

The closest living relative of the soybean is Glycine soja (previously called G. ussuriensis), a legume native to central China.[58] According to the ancient Chinese myth, in 2853 BCE, the legendary Emperor Shennong of China proclaimed that five plants were sacred: soybeans, rice, wheat, barley, and millet.[59] Cultivation of soybeans took place over long periods of time in the prehistory of modern-day Japan, Korea and Northern China, based on archaeological evidence.

The origin of soy bean cultivation remains scientifically debated. Recent research indicates that seeding of wild forms started early (before 5000 BCE) in multiple locations through China, Korea and Japan[60] Great Soviet Encyclopedia records soybean cultivation originated in China about 5000 years ago.[61] Some scholars suggest that soybean originated in China and was domesticated about 3500 BCE.[62] The oldest preserved soybeans resembling modern varieties in size and shape were found in archaeological sites in Korea dated about 1000 BCE[63] Radiocarbon dating of soybean samples recovered through flotation during excavations at the Early Mumun period Okbang site in Korea indicated soybean was cultivated as a food crop in around 1000–900 BCE.[63] Soy bean from the Jomon period in Japan from 3000 BCE[60] are also significantly larger than wild varieties.[60] The cultivation of soybeans began in the eastern half of northern China by 2000 BCE, but is almost certainly much older. [64] It became an important crop by the Zhou Dynasty (c. 1046 BCE–256 BCE) in China. However, the details of where, when, and under what circumstances soybean developed a close relationship with people are poorly understood but archaeologically unsubstantiated source claims that soybean was domesticated "in ancient China perhaps 3000 to 5000 years ago". Soy bean was unknown in South China before the Han period[60] From about the first century CE to the Age of Discovery (15–16th century), soybeans were introduced into several countries, such as India, Japan,[65] Indonesia, the Philippines, Vietnam, Thailand, Cambodia, Malaysia, Burma and Nepal. This spread was due to the establishment of sea and land trade routes. The earliest Japanese textual reference to the soybean is in the classic Kojiki (Records of Ancient Matters), which was completed in 712 CE.

Many people have claimed soybeans in Asia were historically only used after a fermentation process, which lowers the high phytoestrogens content found in the raw plant. However, terms similar to "soy milk" have been in use since 82 CE,[66] and there is evidence of tofu consumption that dates to 220.[67]

North America

Soybeans were first introduced to North America from China in 1765, by Samuel Bowen, a former East India Company sailor who had visited China in conjunction with James Flint, the first Englishman legally permitted by the Chinese authorities to learn Chinese.[68] The first 'New World' soybean crop was grown on Skidaway Island, Georgia in 1765 by Henry Yonge from seeds given him by Samuel Bowen.[69][70] Bowen grew soy near Savannah, Georgia, possibly using funds from Flint, and made soy sauce for sale to England.[71] Although, soybean was introduced into North America in 1765,for the next 155 years, the crop was grown primarily for forage.[72]

It wasn't until Lafayette Mendel and Thomas Burr Osborne (chemist) showed that the nutritional value of soybean seeds could be greatly increased by cooking, wet heat, that soy went from merely a forage to a farm animal feed and became much more appreciated as a human food.[73][74][75]

William Morse is considered the 'father' of modern soybean agriculture in America. He and Charles Piper, Dr. C.V. Piper, took what was an unknown Oriental peasant crop in 1910 and transformed it into a 'golden bean' for America becoming one of America's largest farm crops and its most nutritious.[76][77][78]

Prior to the 1920 in the USA, the soybean was mainly a forage crop, a source of oil, meal (for feed) and industrial products, with very little used as food. However, it took on an important role after World War I. During the Great Depression, the drought-stricken (Dust Bowl) regions of the United States were able to use soy to regenerate their soil because of its nitrogen-fixing properties. Farms were increasing production to meet with government demands, and Henry Ford became a great leader in the soybean industry.

In 1931, Ford hired chemists Robert Boyer and Frank Calvert to produce artificial silk. They succeeded in making a textile fiber of spun soy protein fibers, hardened or tanned in a formaldehyde bath, which was given the name Azlon. It was usable in the making of suits, felt hats, and overcoats. Though pilot production of Azlon reached 5000 pounds per day in 1940, it never reached the commercial market; Dupont's nylon was the winner in the quest to produce artificial silk. In 1932–33, the Ford Motor Company spent approximately $1,250,000 on soybean research. By 1935, every Ford car had soy involved in its manufacture. For example, soybean oil was used to paint the automobiles,[79] as well as fluid for shock absorbers. Ford's involvement with the soybean opened many doors for agriculture and industry to be linked more strongly than ever before.

Henry Ford promoted the soybean, helping to develop uses for it both in food and in industrial products, even demonstrating auto body panels made of soy-based plastics. Ford's interest led to two bushels (120 pounds)[80] of soybeans being used in each Ford car, as well as products like the first commercial soy milk, ice cream and all-vegetable nondairy whipped topping. The Ford development of so-called soy-based plastics was based on the addition of soybean flour and wood flour to phenol formaldehyde plastics.[81] A prototype vehicle, colloquially titled the "Soybean Car", was built in 1941 out of such plastics.[82]

South America

The soybean first arrived in South America in Argentina in 1882.[83]

Andrew McClung showed in the early 1950s that with soil amendments the Cerrado region of Brazil would grow soybeans.[84] The march of soybeans into deforested areas of the Amazon rain forest would come later.[52]

Africa

The soybean first arrived in Africa via Egypt in 1857.[85]

Australia

Wild soybeans were discovered in northeastern Australia in 1770 by explorers Banks and Solander. In 1804, the first soyfood product ("Fine India Soy" [sauce]) was sold in Sydney. In 1879, the first domesticated soybeans arrived in Australia, a gift of the Minister of the Interior Department, Japan.[86]

Canada

In 1831, the first soy product "a few dozen India Soy" [sauce] arrived in Canada. Soybeans were probably first cultivated in Canada by 1855, and definitely in 1895 at Ontario Agricultural College.[87]

Caribbean and West Indies

The soybean arrived in the Caribbean in the form of soy sauce made by Samuel Bowen in Savannah, Georgia, in 1767. It remains only a minor crop there, but its uses for human food are growing steadily.[88]

Central Asia

The soybean is first in cultivated Transcaucasia in Central Asia in 1876, by the Dungans. This region has never been important for soybean production.[89]

Mexico and Central America

The first reliable reference to the soybean in this region dates from Mexico in 1877.[90]

Southeast Asia

By the 13th century, the soybean had arrived in Indonesia; it probably arrived much earlier, carried by traders or merchants from southern China.[91]

South Asia and Indian Subcontinent

By the 1600s, soy sauce spread from southern Japan across the region through the Dutch East India Company (VOC). The soybean probably arrived from southern China, moving southward into northern India.[92]

Europe

In 1873, Professor Friedrich J. Haberlandt first became interested in soybeans when he obtained the seeds of 19 soybean varieties at the Vienna World Exposition (Wiener Weltausstellung). He cultivated these seeds in Vienna, and soon began to distribute them throughout Central and Western Europe. Most of the farmers who received seeds from him cultivated them, then reported their results back to him. Starting in Feb. 1876, he published these results first in various journal articles, and finally in his magnus opum, Die Sojabohne ( The Soybean) in 1878. In northern Europe lupin/lupine is known as the "soybean of the north"[93]

A Hitler Youth manual from the 1930s promoted soy beans, which it called "Nazi beans" as an alternative to meat.[94]

Austria and Switzerland

In 1861, soybeans were first cultivated in Switzerland.

In Austria, at the Vienna World Exposition of 1873, Prof. Friedrich Haberlandt, of the Royal College of Agriculture in Vienna (Wiener Hochschule für Bodenkultur), gathered a number of soybean varieties from the Chinese, Japanese, Mongolian, Transcaucasian and East Indian expositions. In 1875 he first grew the soybeans in Vienna, then in early 1876 he sent samples of seeds to seven cooperators in central Europe, who planted and tested the seeds in the spring of 1876, with good or fairly good results in each case.[95]

France

The soybean was first cultivated in France by 1779 (and perhaps as early as 1740). The two key early people and organizations introducing the soybean to France were the Society of Acclimatization (starting in 1855) and Li Yu-ying (from 1910). Li started a large tofu factory, where the first commercial soyfoods in France were made.[96]

Greece

1935 - Soybeans are first introduced to Greece by Anton Brillmayer, an Austrian soybean breeder (Brillmayer. 1947. "Die Kultur der Soja in Oesterreich," p. 14-18).

1939 - By now, soybeans have been cultivated in Greece (Matagrin. 1939. "Le Soja et les Industries du Soja," p. 47-48).

An entire book has been published on the history of soybeans and soyfoods in Greece.[97]

Italy

The soybean was first cultivated in Italy by 1760 in the Botanical Garden of Turin. During the 1780s it was grown at at least three other botanical gardens in Italy.[98]

Spain and Portugal

In 1603, "Vocabvlario da Lingoa de Iapam", a famous Japanese-Portuguese dictionary, was compiled and published by Jesuit priests in Nagasaki. It contains short but clear definitions for about 20 words related to soyfoods - the first in any European language.

In 1880, the soybean was first cultivated in Portugal in the Botanical Gardens at Coimbra (Crespi 1935).

In about 1910 in Spain the first attempts at Soybean cultivation were made by the Count of San Bernardo, who cultivated soybeans on his estates at Almillo (in southwest Spain) about 48 miles east-northeast of Seville.[99]

Genetic modification

Further information: Genetically modified soybean
Different varieties of soybeans being grown together

Soybeans are one of the "biotech food" crops that have been genetically modified, and genetically modified soybeans are being used in an increasing number of products. In 1995, Monsanto company introduced glyphosate-tolerant soybeans that have been genetically modified to be resistant to Monsanto's glyphosate herbicides through substitution of the Agrobacterium sp. (strain CP4) gene EPSP (5-enolpyruvyl shikimic acid-3-phosphate) synthase. The substituted version is not sensitive to glyphosate.[100]

In 1997, about 8% of all soybeans cultivated for the commercial market in the United States were genetically modified. In 2010, the figure was 93%.[101] As with other glyphosate-tolerant crops, concern is expressed over damage to biodiversity.[102] A 2003 study[103] concluded the RR gene had been bred into so many different soybean cultivars, there had been little decline in genetic diversity, but "diversity was limited among elite lines from some companies".

The widespread use of such types of GM soybeans in the Americas has caused problems with exports to some regions. GM crops require extensive certification before they can be legally imported into the European Union, where there is considerable supplier and consumer reluctance to use GM products for consumer or animal use. Difficulties with coexistence and subsequent traces of cross-contamination of non-GM stocks have caused shipments to be rejected and have put a premium on non-GM soy.[104]

A 2006 United States Department of Agriculture report found the adoption of genetically engineered (GE) soy, corn and cotton reduced the amount of pesticides used overall, but did result in a slightly greater amount of herbicides used for soy specifically. The use of GE soy was also associated with greater conservation tillage, indirectly leading to better soil conservation, as well as increased income from off-farming sources due to the greater ease with which the crops can be managed. Though the overall estimated benefits of the adoption of GE soybeans in the United States was $310 million, the majority of this benefit was experienced by the companies selling the seeds (40%), followed by biotechnology firms (28%) and farmers (20%).[105] The patent on glyphosate-tolerant soybeans expired in 2014,[106] so benefits can be expected to shift.[107]

In 2010, a team of American scientists announced they had sequenced the soybean genome – the first legume to be sequenced.[108][109]

Uses

Tofu and soy sauce
One type of soya chunk as meal maker
Japanese soybean meat
Open package of a soy-based cream cheese alternative with chives
A Malaysian Soy milk carton, and a glass of the beverage

Among the legumes, the soybean is valued for its high (38–45%) protein content as well as its high (approximately 20%) oil content. Soybeans are the second-most valuable agricultural export in the United States, behind corn. Approximately 85% of the world's soybean crop is processed into soybean meal and soybean oil, the remainder processed in other ways or eaten whole.[110]

Soybeans can be broadly classified as "vegetable" (garden) or field (oil) types. Vegetable types cook more easily, have a mild, nutty flavor, better texture, are larger in size, higher in protein, and lower in oil than field types. Tofu and soy milk producers prefer the higher protein cultivars bred from vegetable soybeans originally brought to the United States in the late 1930s. The "garden" cultivars are generally not suitable for mechanical combine harvesting because there is a tendency for the pods to shatter upon reaching maturity.

Soybean oil

Main article: Soybean oil

Soybean seed contains 18-19% oil.[111] To extract soybean oil from seed, the soybeans are cracked, adjusted for moisture content, rolled into flakes and solvent-extracted with commercial hexane. The oil is then refined, blended for different applications, and sometimes hydrogenated. Soybean oils, both liquid and partially hydrogenated, are exported abroad, sold as "vegetable oil", or end up in a wide variety of processed foods.

Soybean meal

Main article: Soybean meal

Soybean meal, or soymeal, is the material remaining after solvent extraction of oil from soybean flakes, with a 50% soy protein content. The meal is 'toasted' (a misnomer because the heat treatment is with moist steam) and ground in a hammer mill. Ninety-seven percent of soybean meal production globally is used as livestock feed.[111] Soybean meal is also used in some dog foods.[112]

Livestock feed

One of the major uses of soybeans globally is as livestock feed, predominantly in the form of soybean meal. Spring grasses are rich in omega-3 fatty acids, whereas soy is predominantly omega-6.

Food for human consumption

In addition to their use in livestock feed, soybean products are widely used for human consumption. Common soybean products include soy sauce, soy milk, tofu, soy meal, soy flour, textured vegetable protein (TVP), tempeh, soy lecithin and soybean oil. Soybeans may also be eaten with minimal processing, for example in the Japanese food edamame (枝豆 edamame), in which immature soybeans are boiled whole in their pods and served with salt.

In China, Japan, and Korea, soybean and soybean products are a common part of the diet. Tofu (豆腐 dòufu) is thought to have originated in China, along with soy sauce and several varieties of soybean paste used as seasonings. Japanese foods made from soya include miso (味噌), nattō (納豆), kinako (黄粉) and edamame (枝豆), as well as products made with tofu such as atsuage and aburaage. In Korean cuisine, soybean sprouts (콩나물 kongnamul) are used in a variety of dishes, and are the base ingredient in doenjang, cheonggukjang and ganjang. In Vietnam, soybeans are used to make soybean paste (tương) in the North with the most popular products are tương Bần, tương Nam Đàn, tương Cự Đà as a garnish for phở and gỏi cuốn dishes, as well as tofu (đậu hũ or đậu phụ or tàu hũ), soy sauce (nước tương), soy milk (nước đậu in the North or sữa đậu nành in the South), and đậu hũ nước đường (tofu sweet soup).

Flour

Wikimedia Commons has media related to Soybean flour.

Soy flour refers to soybeans ground finely enough to pass through a 100-mesh or smaller screen where special care was taken during desolventizing (not toasted) to minimize denaturation of the protein to retain a high protein dispersibility index, for uses such as food extrusion of textured vegetable protein. It is the starting material for production of soy concentrate and soy protein isolate.

Soy flour is made by roasting the soybean, removing the coat, and grinding into a flour. Soy flour is manufactured with different fat levels.[113] Alternatively, raw soy flour omits the roasting step.

Soy lecithin can be added (up to 15%) to soy flour to make lecithinated soy flour. It increases dispersibility and gives it emulsifying properties.[113]

Soy flour has 50% protein and 5% fiber. It has higher levels of protein, thiamine, riboflavin, phosphorus, calcium, and iron than wheat flour. It does not contain gluten.[113] As a result, yeast-raised breads made with soy flour are dense in texture. Among many uses, soy flour thickens sauces, prevents staling in baked food, and reduces oil absorption during frying. Baking food with soy flour gives it tenderness, moistness, a rich color, and a fine texture.[113]

Soy grits are similar to soy flour except the soybeans have been toasted and cracked into coarse pieces.

Kinako is a soy flour used in Japanese cuisine.

Section reference: Smith & Circle (1972, p. 442)

Soy-based infant formula

Soy-based infant formula (SBIF) is sometimes given to infants who are not being strictly breastfed; it can be useful for infants who are either allergic to pasteurized cow milk proteins or who are being fed a vegan diet. It is sold in powdered, ready-to-feed, and concentrated liquid forms.

Some reviews have expressed the opinion that more research is needed to determine what effect the phytoestrogens in soybeans may have on infants.[119] Diverse studies have concluded there are no adverse effects in human growth, development, or reproduction as a result of the consumption of soy-based infant formula.[120][121][122] One of these studies, published in the Journal of Nutrition,[122] concludes that there are:

... no clinical concerns with respect to nutritional adequacy, sexual development, neurobehavioral development, immune development, or thyroid disease. SBIFs provide complete nutrition that adequately supports normal infant growth and development. FDA has accepted SBIFs as safe for use as the sole source of nutrition.

Meat and dairy alternatives and extenders

Soybeans can be processed to produce a texture and appearance similar to many other foods. For example, soybeans are the primary ingredient in many dairy product substitutes (e.g., soy milk, margarine, soy ice cream, soy yogurt, soy cheese, and soy cream cheese) and meat alternatives (e.g. veggie burgers). These substitutes are readily available in most supermarkets. Soy milk does not naturally contain significant amounts of digestible calcium. Many manufacturers of soy milk sell calcium-enriched products, as well. Soy is also used in tempeh: the beans (sometimes mixed with grain) are fermented into a solid cake.

Soy products also are used as a low-cost substitute in meat and poultry products.[123][124] Food service, retail and institutional (primarily school lunch and correctional) facilities regularly use such "extended" products. Extension may result in diminished flavor, but fat and cholesterol are reduced. Vitamin and mineral fortification can be used to make soy products nutritionally equivalent to animal protein; the protein quality is already roughly equivalent. The soy-based meat substitute textured vegetable protein has been used for more than 50 years as a way of inexpensively extending ground beef without reducing its nutritional value.[3][4][125][126]

Soynut butter

The soybean is used to make a product similar to peanut butter, called SoyNut Butter and with the slogan "I.M. Healthy" printed on the label.[127]

Other products

Soybeans with black hulls are used in Chinese fermented black beans, douchi, not to be confused with black turtle beans.

Soybeans are also used in industrial products, including oils, soap, cosmetics, resins, plastics, inks, crayons, solvents, and clothing. Soybean oil is the primary source of biodiesel in the United States, accounting for 80% of domestic biodiesel production.[128] Soybeans have also been used since 2001 as fermenting stock in the manufacture of a brand of vodka.[129] In 1936, Ford Motor Company developed a method where soybeans and fibers were rolled together producing a soup which was then pressed into various parts for their cars, from the distributor cap to knobs on the dash board. Ford also informed in public relation releases that in 1935 over five million acres (20,000 km2) was dedicated to growing soybeans in the United States.[130]

Health

Cancer

According to the American Cancer Society, "Studies in humans have not shown harm from eating soy foods. Moderate consumption of soy foods appears safe for both breast cancer survivors and the general population, and may even lower breast cancer risk." They caution however that soy supplements should be avoided.[131]

Alpha-linolenic acid

Roasted soybeans

Soybean oil is one of the vegetable oils that contain a significant amount of the omega-3 fatty acid alpha-linolenic acid (18:3n−3, ALA). Other plant oils containing ALA include canola, walnut, hemp, and flax. Soybean oil has an omega-3:omega-6 ratio of 1:7. This is a significantly higher omega-3 content than in other vegetable cooking oils except for Hemp and flaxseed. While hemp, and flaxseed are both higher with a ratio of 3:1, they are not very practical for cooking. For more information on the health benefits of omega-3 and omega-6 fatty acids, see Essential fatty acids.

Phytochemicals

Saponins, a class of natural surfactants (soaps), are sterols that are present naturally in a wide variety of food-plants, including vegetables, legumes, and cereals–ranging from beans and spinach to tomatoes, potatoes and oats. Whole soybeans contain from 0.17 to 6.16% saponins, 0.35 to 2.3% in defatted soy flour and 0.06 to 1.9% in tofu. Legumes such as soybean and chickpeas are the major source of saponins in the human diet. Sources of non-dietary saponins include alfalfa, sunflower, herbs and barbasco.

Soy contains isoflavones like genistein and daidzein. It also contains glycitein, an O-methylated isoflavone which accounts for 5–10% of the total isoflavones in soy food products. Glycitein is a phytoestrogen with weak estrogenic activity, comparable to that of the other soy isoflavones.[132]

Isoflavones

Main article: Isoflavones

Soybeans also contain the isoflavones genistein and daidzein, types of phytoestrogen.[133]

Soy's content of isoflavones are as much as 3 mg/g dry weight.[134] Isoflavones are polyphenol compounds, produced primarily by beans and other legumes, including peanuts and chickpeas. Isoflavones are closely related to the antioxidant flavonoids found in other plants, vegetables and flowers. Isoflavones such as genistein and daidzein are found in only some plant families, because most plants do not have an enzyme, chalcone isomerase which converts a flavone precursor into an isoflavone.

Glyceollins are molecules belonging to the pterocarpans family. They are also found in the soybean and have been found to have an antifungal activity against Aspergillus sojae, the fungal ferment used to produce soy sauce.[135] They are phytoalexins with an antiestrogenic activity.[136]

Cholesterol and heart diseases

The dramatic increase in soyfood sales is largely credited to the Food and Drug Administration's (FDA) approval of soy as a cholesterol-lowering food, along with other heart and health benefits.[137]

One review[138] concluded that soy protein is correlated with significant decreases in serum cholesterol, LDL (bad cholesterol) and triglycerides. However, HDL (good cholesterol) did not increase by a significant amount.[139] Soy phytoestrogens (isoflavones: genistein and daidzein) adsorbed onto the soy protein were suggested as the agent reducing serum cholesterol levels.

The FDA granted the following health claim for soy: "25 grams of soy protein a day, as part of a diet low in saturated fat and cholesterol, may reduce the risk of heart disease."[21] One serving, (1 cup or 240 mL) of soy milk, for instance, contains 6 or 7 grams of soy protein. Solae resubmitted their original petition, asking for a more vague health claim, after their original was challenged and highly criticized. Solae also submitted a petition for a health claim that soy can help prevent cancer. They quickly withdrew the petition for lack of evidence and after more than 1,000 letters of protest were received. On February 18, 2008 Weston A. Price Foundation submitted a petition for removal of this health claim.[140] 25 g/day soy protein was established as the threshold intake because most trials used at least this much protein and not because less than this amount is inefficacious. In fact, there is evidence suggesting that lower amounts are indeed efficacious.[141]

An American Heart Association (AHA) review of a decade long study of soy protein benefits casts doubt on the FDA allowed "Heart Healthy" claim for soy protein and does not recommend isoflavone supplementation. The review panel also found that soy isoflavones have not been shown to reduce post-menopausal "hot flashes" and the efficacy and safety of isoflavones to help prevent cancers of the breast, uterus or prostate is in question. However, AHA concludes that "many soy products should be beneficial to cardiovascular and overall health because of their high content of polyunsaturated fats, fiber, vitamins, and minerals and low content of saturated fat".[133]

The AHA did not conduct a formal statistical analysis of the 22 studies upon which they based their estimate of the potency of soy protein. When such an analysis was conducted, Jenkins et al.[142] found that the AHA had considerably underestimated the hypocholesterolemic effects of soy protein. Further, when the analysis was limited to the 11 studies that provided evidence that the control and soy diets were matched, soy protein was found to lower LDL by 5.2 percent. This estimate is in line with the results of other recently published meta-analyses.[143][144][145] Furthermore, recent research suggests that soy protein decreases postprandial triglyceride levels, which is increasingly viewed as important for reducing coronary heart disease risk.[146]

Phytic acid

Main article: Phytic acid

Soybeans contain a high level of phytic acid, which has many effects including acting as an antioxidant and a chelating agent. The beneficial claims for phytic acid include reducing cancer,[147] minimizing diabetes,[148] and reducing inflammation.[149] However, phytic acid is also criticized for reducing vital minerals due to its chelating effect, especially for diets already low in minerals.[150]

Health risks

Allergy

Main article: Soy allergy

Allergy to soy is common, and the food is listed with other foods that commonly cause allergy, such as milk, eggs, peanuts, tree nuts, shellfish. The problem has been reported among younger children, and the diagnosis of soy allergy is often based on symptoms reported by parents and results of skin tests or blood tests for allergy. Only a few reported studies have attempted to confirm allergy to soy by direct challenge with the food under controlled conditions.[151] It is very difficult to give a reliable estimate of the true prevalence of soy allergy in the general population. To the extent that it does exist, soy allergy may cause cases of urticaria and angioedema, usually within minutes to hours of ingestion. In rare cases, true anaphylaxis may also occur. The reason for the discrepancy is likely that soy proteins, the causative factor in allergy, are far less potent at triggering allergy symptoms than the proteins of peanut and shellfish.[152] An allergy test that is positive demonstrates that the immune system has formed IgE antibodies to soy proteins. However, this is only a factor when soy proteins reach the blood without being digested, in sufficient quantities to reach a threshold to provoke actual symptoms.

Soy can also trigger symptoms via food intolerance, a situation where no allergic mechanism can be proven. One scenario is seen in very young infants who have vomiting and diarrhoea when fed soy-based formula, which resolves when the formula is withdrawn. Older infants can suffer a more severe disorder with vomiting, diarrhoea that may be bloody, anemia, weight loss and failure to thrive. The most common cause of this unusual disorder is a sensitivity to cow's milk, but soy formulas can also be the trigger. The precise mechanism is unclear and it could be immunologic, although not through the IgE-type antibodies that have the leading role in urticaria and anaphylaxis. However it is also self-limiting and will often disappear in the toddler years.[153]

Phytoestrogen

Main article: Phytoestrogens

Soybeans contain isoflavones called genistein and daidzein, which are one source of phytoestrogens in the human diet. Because most naturally occurring phytoestrogens act as selective estrogen receptor modulators, or SERMs, which do not necessarily act as direct agonists of estrogen receptors, normal consumption of foods that contain these phytoestrogens should not provide sufficient amounts to elicit a physiological response in humans.[154][155]

Plant lignans associated with high fiber foods such as cereal brans and beans are the principal precursor to mammalian lignans which have an ability to bind to human estrogen sites. Soybeans are a significant source of mammalian lignan precursor secoisolariciresinol containing 13–273 µg/100 g dry weight.[156] Another phytoestrogen in the human diet with estrogen activity is coumestans, which are found in beans, split-peas, with the best sources being alfalfa, clover, and soybean sprouts. Coumestrol, an isoflavone coumarin derivative is the only coumestan in foods.[157][158]

Soybeans and processed soy foods are among the richest foods in total phytoestrogens (wet basis per 100 g), which are present primarily in the form of the isoflavones daidzein and genistein.[159] When compared to human breast fed or cow milk formula fed diets, which contain isoflavone levels of 0.005-0.01 mg/day, soy-based infant formulas contain isoflavone levels of 6–47 mg/day that constitute several orders of magnitude greater than they receive from other sources of nutrition.[160]

Breast Cancer

Women

A 2001 literature review suggested that women with current or past breast cancer should be aware of the risks of potential tumor growth when taking soy products, based on the effect of phytoestrogens to promote breast cancer cell growth in animals.[161] A 2006 commentary reviewed the relationship with soy and breast cancer. They stated that soy may decrease the risk of breast cancer, but cautioned that the impact of isoflavones on breast tissue needs to be evaluated at the cellular level in women at high risk for breast cancer.[162]

A high consumption of omega-6 polyunsaturated fatty acids, which are found in most types of vegetable oil including soybean oil, may increase the likelihood that postmenopausal women will develop breast cancer.[163] Another analysis suggests an inverse association between total polyunsaturated fatty acids and breast cancer risk.[164] A 2011 analysis of the literature said: "Our study suggests soy isoflavones intake is associated with a significant reduced risk of breast cancer incidence in Asian populations, but not in Western populations."[165]

Men

Because of the phytoestrogen content, some studies have suggested that soybean ingestion may influence testosterone levels in men. However, a 2010 meta-analysis of 15 placebo controlled studies showed that neither soy foods nor isoflavone supplements alter measures of bioavailable testosterone or estrogen concentrations in men.[166] It has been hypothesized that soy foods and enterolactone may increase the development of prostate cancer although no significant associations were observed for the soy isoflavones.[167] Furthermore, soy consumption has been shown to have no effect on the levels and quality of sperm.[168] A 2009 meta-analysis of the research on the association between soy consumption and prostate cancer risk in men concluded that "consumption of soy foods is associated with a reduction in prostate cancer risk in men."[169]

Brain

Because of mixed results from animal studies and epidemiological studies, a (relatively definitive but expensive) controlled study of the impacts of soy on cognitive skills was performed; it found no impact.

Though there is some evidence that estrogen can help protect and repair the brain after injury in rats,[170] there is also evidence that phytoestrogens may be harmful for the recovery of rats in other situations[171] that have sustained brain injury.

Similarly, epidemiological evidence of humans eating soya products is currently divided: a study of Japanese men between 1965 and 1999 demonstrated a positive correlation between brain atrophy and consumption of tofu meals.[172]

A 2001 literature review noted that disturbing data on soy's effect on the cognitive function of the elderly existed.[173] In 2008, an epidemiological study of 719 Indonesian elderly individuals found that tofu intake was associated with worse memory, but tempeh (a fermented soy product) intake was associated with better memory.[174]

The cover article in the Center for Science in the Public Interest's September 2014 newsletter reported that a controlled study at USC prompted by suggestive epidemiological evidence found no impact on cognitive skills of years of soy vs milk protein diet enrichment.[175]

Carcinogenicity

Though raw soy flour is known to be correlated with pancreatic cancer in rats[176] the cooked flour has not been found carcinogenic.[177][178] Whether soy might promote pancreatic cancer in humans is unknown because studies have not yet attempted to single out soy intake and the incidence of pancreatic cancer in humans, and the amount of soy fed to the rats is proportionately far larger than what humans would normally consume. However, the soy isoflavone genistein has been suggested as a chemopreventive agent against pancreatic cancer, by interfering with the chemical pathways that promote the creation and growth of tumors.[179]

The Cancer Council of New South Wales, Australia has released a statement saying scientific research suggests that overall the moderate consumption of soy products does not appear to present a risk to women with breast cancer, and there is equivocal evidence that consuming large amounts of soy products may have a protective effect against developing breast and prostate cancer. However, the Council does not recommend taking soy dietary supplements as there is no evidence they are either effective or safe at preventing or treating cancers.

Gout

Soybeans and soy products contain significant amounts of purines, a class of organic compounds. For people who suffer from gout, eating foods containing moderate or high levels of purines may make the condition worse. The U.S. National Institutes of Health (NIH) recommends that gout sufferers limit consumption of soy products (although also suggesting that soy may have health benefits by reducing the risk for heart disease).[180] However, other researchers have found little or no association between consumption of purine-rich vegetables (including beans) and gout.[181][182]

Futures

Soybean futures are traded on the Chicago Board of Trade and have delivery dates in January (F), March (H), May (K), July (N), August (Q), September (U), November (X).

It is also traded on other commodity futures exchanges under different contract specifications:

See also

References

  1. "Glycine max". Encyclopedia of Life. Retrieved February 16, 2012.
  2. "Glycine max". Multilingual Multiscript Plant Name Database. Retrieved February 16, 2012.
  3. 1 2 Riaz, Mian N. (2006). Soy Applications in Food. Boca Raton, FL: CRC Press. ISBN 0-8493-2981-7.
  4. 1 2 3 "Soy Benefits". National Soybean Research Laboratory. Retrieved February 16, 2012.
  5. World Soybean Production 2010, Soy stats, 2011.
  6. 1 2 "Growing Crush Limits India's Soy Oil Imports" (PDF). Oilseeds: World Markets and Trade. United States Department of Agriculture. Archived from the original (PDF) on February 8, 2012. Retrieved February 17, 2012.
  7. "枝豆". ALC Networks Inc. Retrieved February 17, 2012.
  8. "History of Edamame, Green Vegetable Soybeans, and Vegetable-Type Soybeans". Soyinfo Center. Retrieved February 17, 2012.
  9. "Soybean, The Miracle Bean". soyatech.com.
  10. "History of Soy Sauce, Shoyu, and Tamari – Page 1". soyinfocenter.com.
  11. Singh, Ram J.; Nelson, Randall L.; Chung, Gyuhwa (November 2, 2006). Genetic Resources, Chromosome Engineering, and Crop Improvement: Oilseed Crops, Volume 4. London: Taylor & Francis. p. 15. ISBN 978-0-8493-3639-3.
  12. Hymowitz, Theodore (August 9, 1995). "Evaluation of Wild Perennial Glycine Species and Crosses For Resistance to Phakopsora". In Sinclair, J.B.; Hartman, G.L. Proceedings of the Soybean Rust Workshop. Urbana, IL: National Soybean Research Laboratory. pp. 33–37.
  13. Newell, C. A.; Hymowitz, T. (March 1983). "Hybridization in the Genus Glycine Subgenus Glycine Willd. (Leguminosae, Papilionoideae)". American Journal of Botany (Botanical Society of America) 70 (3): 334–348. doi:10.2307/2443241. JSTOR 2443241.
  14. "Perennial soybean (Neonotonia wightii)". feedipedia.org.
  15. "Neonotonia wightii in Global Plants on JSTOR". jstor.org.
  16. "Factsheet – Neonotonia wightii". tropicalforages.info.
  17. 1 2 3 4 5 6 Purcell, Larry C.; Salmeron, Montserrat; Ashlock, Lanny (2014). "Chapter 2" (PDF). Arkansas Soybean Production Handbook - MP197. Little Rock, AR: University of Arkansas Cooperative Extension Service. pp. 1–8. Retrieved 21 February 2016.
  18. Blackman, S. A.; Obendorf, R. L.; Leopold, A. C. (1992). "Maturation Proteins and Sugars in Desiccation Tolerance of Developing Soybean Seeds". Plant Physiology (American Society of Plant Biologists) 100 (1): 225–30. doi:10.1104/pp.100.1.225. PMC 1075542. PMID 16652951.
  19. Jim Deacon. "The Nitrogen cycle and Nitrogen fixation". Institute of Cell and Molecular Biology, The University of Edinburgh.
  20. Circle, Sidney Joseph; Smith, Allan H. (1972). Soybeans: Chemistry and Technology. Westport, CT: Avi Publishing. pp. 104, 163. ISBN 0-87055-111-6.
  21. 1 2 3 Henkel, John (May–June 2000). "Soy:Health Claims for Soy Protein, Question About Other Components". FDA Consumer (Food and Drug Administration) 34 (3): 18–20. PMID 11521249.
  22. Protein Quality Evaluation: Report of the Joint FAO/WHO Expert Consultation. Bethesda, MD (USA): Food and Agriculture Organization of the United Nations (Food and Nutrition Paper No. 51). December 1989. ISBN 92-5-103097-9.
  23. Derbyshire, E.; Wright, D. J.; Boulter, D. (1976). "Legumin and Vicilin, Storage Proteins of Legume Seeds". Phytochemistry (Elsevier Science Ltd.) 15 (1): 3–24. doi:10.1016/S0031-9422(00)89046-9.
  24. Danielsson, C. E. (1949). "Seed Globulins of the Gramineae and Leguminosae". The Biochemical Journal (Portland Press Ltd) 44 (4): 387–400. PMC 1274878. PMID 16748534.
  25. Wolf, W. J. "Legumes: Seed Composition and Structure, Processing Into Protein Products and Protein Properties" (PDF). United States Department of Agriculture. pp. 291–314. Retrieved February 17, 2012.
  26. "Soluble Carbohydrates in Soybean". intechopen.com.
  27. "From Soybean Phytosterols to Steroid Hormones". intechopen.com.
  28. "Nutrient data laboratory". United States Department of Agriculture. Retrieved June 2014.
  29. 1 2 Seed Proteins; Peter R. Shewery and Rod Casey (Eds) 1999. Kluwer Academic Publishers, Dordrecht, The Netherlands
  30. "Subunit structure of the vicilin-like globular storage...". usda.gov.
  31. "Cocoa-specific aroma precursors are generated by proteolytic...". usda.gov.
  32. http://library.osu.edu/assets/Uploads/ScienceCafe/Barringer020310.pdf
  33. http://pubs.acs.org/doi/abs/10.1021/jf801734m
  34. http://www.alice.cnptia.embrapa.br/bitstream/doc/880533/1/Comparativeproteomical.pdf
  35. "Evolution of seed storage globulins and cupin superfamily". springer.com.
  36. 1 2 Youle RJ and Huang AHC: Occurrence of low molecular weight and high cysteine containing albumin storage proteins in oilseed of diverse species. Am J Botany 68:44-48,1981
  37. "2S Albumin Storage Proteins: What Makes them Food Allergens?". Open Biochem J 2: 16–28. 2008. doi:10.2174/1874091X00802010016. PMC 2570561. PMID 18949071.
  38. "Scalable purification and characterization of the anticancer lunasin peptide from soybean". PLoS ONE 7 (4): e35409. 2012. doi:10.1371/journal.pone.0035409. PMC 3326064. PMID 22514740.
  39. http://www.sciencedaily.com/releases/2009/12/091202153946.htm
  40. "AllFam – AllFam Allergen Family Factsheet". meduniwien.ac.at.
  41. Patel, Raj (2008). Stuffed & Starved From Farm to Fork, the Hidden Battle for the World Food System. London: Portobello Books Ltd. pp. 169–173. ISBN 1-933633-49-2.
  42. Wik, Reynold Millard (Summer 1962). "Henry Ford's Science and Technology for Rural America". Technology and Culture (The Johns Hopkins University Press on behalf of the Society for the History of Technology) 3 (3): 247–258. doi:10.2307/3100818.
  43. Baohui Song, Mary A. Marchant, Shuang Xu (2006). "Competitive Analysis of Chinese Soybean Import Suppliers—U.S., Brazil, and Argentina" (PDF). American Agricultural Economics Association Annual Meetings. Research in Agricultural & Applied Economics, University of Minnesota. Archived from the original (PDF) on September 5, 2013.
  44. "How the Global Oil Seed and Grain Trade Works" (PDF). Soyatech. Retrieved February 18, 2012.
  45. "FAOSTAT: Production, Crops, Cassava, 2010 data". Food and Agriculture Organization. 2011. Retrieved February 18, 2012.
  46. "World Soybean Record Holder Teaches Top Yields". Farm Progress. February 17, 2011. Retrieved February 18, 2012.
  47. Fargione, Joseph; Hill, Jason; Tilman, David; Polasky, Stephen; Hawthorne, Peter (February 2008). "Land Clearing and the Biofuel Carbon Debt". Science 319 (5867): 1235–1238. Bibcode:2008Sci...319.1235F. doi:10.1126/science.1152747. PMID 18258862.
  48. "Big Business Leaves Big Forest Footprints". BBC News. February 16, 2010.
  49. http://www.nytimes.com/2015/10/11/opinion/sunday/deforestation-and-drought.html
  50. Lang, Susan (June 21, 2006). "Cornell Alumnus Andrew Colin McClung Reaps 2006 World Food Prize". Chronicle Online (Cornell University). Retrieved February 18, 2012.
  51. Pearce, Fred (April 14, 2011). "The Cerrado: Brazil's Other Biodiverse Region Loses Ground". Yale University. Retrieved February 18, 2012.
  52. 1 2 http://www.vqronline.org/essay/soy-amazon
  53. McBride, M. B.; Richards, B. K.; Steenhuis, T.; Spiers, G. (May–June 2000). "Molybdenum Uptake by Forage Crops Grown on Sewage Sludge-Amended Soils in the Field and Greenhouse" (PDF). Journal of Environmental Quality (Cornell University) 29 (3): 848–854. doi:10.2134/jeq2000.00472425002900030021x.
  54. Heckman, J. R.; Angle, J. S.; Chaney, R. L. (December 9, 1985). "Residual Effects of Sewage Sludge on Soybean: II. Accumulation of Soil and Symbiotically Fixed Nitrogen" (PDF). Journal of Environmental Quality (Soil Science Society of America) 16 (2): 118–124. doi:10.2134/jeq1987.00472425001600020005x.
  55. Herbert, Ames, Cathy Hull, and Eric Day. "Corn Earworm Biology and Management in Soybeans." Virginia Cooperative Extension, Virginia State University (2009).
  56. Shurtleff, William; Aoyagi, Akiko. 2013. History of Whole Dry Soybeans, Used as Beans, or Ground, Mashed or Flaked (240 BCE to 2013). Lafayette, California. 950 pp.
  57. Lee, Gyoung-Ah; Crawford, Gary W.; Liu, Li; Sasaki, Yuka; Chen, Xuexiang (November 4, 2011). "Archaeological Soybean (Glycine max) in East Asia: Does Size Matter?". PLoS ONE 6 (11): e26720. doi:10.1371/journal.pone.0026720. Retrieved 2 August 2015.
  58. "Soybean". Encyclopedia Britannica Online. Retrieved February 18, 2012.
  59. "History of Soybeans". Soya – Information about Soy and Soya Products. Retrieved February 18, 2012.
  60. 1 2 3 4 "Archaeological Soybean (Glycine max) in East Asia: Does Size Matter?". PLOS ONE. Retrieved April 1, 2013.
  61. Great Soviet encyclopedia, ed. A. M. Prokhorov (New York: Macmillan, London: Collier Macmillan, 1974–1983) 31 volumes, three volumes of indexes. Translation of third Russian edition of Bol'shaya sovetskaya entsiklopediya
  62. Siddiqi, Mohammad Rafiq. Tylenchida: Parasites of Plants and Insects. New York: CABI Pub. 389. p. (2001).
  63. 1 2 Stark, Miriam T. (2005). Archaeology of Asia (Blackwell Studies in Global Archaeology). Hoboken, NJ: Wiley-Blackwell. p. 81. ISBN 1-4051-0213-6. Retrieved February 18, 2012.
  64. Murphy, Denis J. People, Plants and Genes: The Story of Crops and Humanity. New York: The Chinese UNew York: Oxford University Press. 122–123. p. (2007).
  65. Shurtleff, William; Aoyagi, Akiko. 2012. History of Soybeans and Soyfoods in Japan. Lafayette, California. 3,337 pp. (11,505 references, 445 photos and illustrations. Free online)
  66. "History of Soymilk and Dairy-like Soymilk Products". Soy Info Center. 2007. Retrieved February 18, 2012.
  67. "Chronology of Tofu Worldwide 965 A.D. to 1929". Soy Info Center. Retrieved February 18, 2012.
  68. Chaplin, J. E. (1996). An Anxious Pursuit: Agricultural Innovation and Modernity in the Lower South, 1730–1815. University of North Carolina Press. p. 147. ISBN 978-0-8078-4613-1.
  69. http://www.caes.uga.edu/extension/irwin/anr/Vol29.1.pdf.pdf
  70. "The Rockmart Journal – Google News Archive Search". google.com.
  71. Eat Your Food! Gastronomical Glory from Garden to Gut: A Coastalfields Cookbook, Nutrition Textbook, Farming Manual and Sports Manual. Coastalfields Press. April 2007. ISBN 978-0-9785944-8-0. Retrieved 4 May 2013.
  72. http://www.nsrl.uiuc.edu/aboutsoy/history4.html
  73. personal communication: Theodore Hymowitz; professor emeritus; University of Illinois , Urbana-Champaign
  74. "The Kunitz Soybean Variety". uiuc.edu.
  75. "Scientists create new low-allergen soybean". illinois.edu.
  76. "William J. Morse and Charles V. Piper". soyinfocenter.com.
  77. "William J. Morse – History of His Work with Soybeans and Soyfoods (1884–1959) – SoyInfo Center". soyinfocenter.com.
  78. "The Soybean". google.com.
  79. Joe Schwarcz (2004). The Fly in the Ointment: 63 Fascinating Commentaries on the Science of Everyday Life. ECW Press. p. 193. ISBN 978-1-55022-621-8. Retrieved 4 May 2013.
  80. "Tables for Weights and Measurement: Crops – Table 1 Weights per bushel". University of Missouri. Retrieved February 18, 2012.
  81. "Henry Ford's Eco-Friendly Automobile". Harbay. Retrieved February 18, 2012.
  82. "Soybean Car". The Henry Ford. Retrieved February 18, 2012.
  83. Shurtleff, William; Aoyagi, Akiko. History of Soybeans and Soyfoods in South America (1882–2009). Soy Info Center. ISBN 978-1-928914-23-5. Retrieved February 18, 2012.
  84. http://www.news.cornell.edu/stories/2006/06/cornellian-reaps-2006-world-food-prize
  85. Shurtleff, William; Aoyagi, Akiko. History of Soybeans and Soyfoods in Africa (1857–2009). Soy Info Center. ISBN 978-1-928914-25-9. Retrieved February 18, 2012.
  86. Shurtleff, William; Aoyagi, Akiko. History of Soybeans and Soyfoods in Australia, New Zealand and Oceania (1770–2010). Soy Info Center. ISBN 978-1-928914-29-7. Retrieved February 18, 2012.
  87. Shurtleff, William; Aoyagi, Akiko. History of Soybeans and Soyfoods in Canada (1831–2010). Soy Info Center. ISBN 978-1-928914-28-0. Retrieved February 18, 2012.
  88. Shurtleff, William; Aoyagi, Akiko. History of Soybeans and Soyfoods in the Caribbean / West Indies (1767–2008). Soy Info Center. Retrieved February 18, 2012.
  89. Shurtleff, William; Aoyagi, Akiko. History of Soybeans and Soyfoods in Central Asia (1876–2008). Soy Info Center. Retrieved February 18, 2012.
  90. Shurtleff, William; Aoyagi, Akiko. "History of Soybeans and Soyfoods in Mexico and Central America (1877–2009)". Soy Info Center. Retrieved February 18, 2012.
  91. Shurtleff, William; Aoyagi, Akiko. "History of Soybeans and Soyfoods in Southeast Asia (1770–2010)". Soy Info Center. ISBN 978-1-928914-30-3. Retrieved February 18, 2012.
  92. Shurtleff, William; Aoyagi, Akiko. "History of Soybeans and Soyfoods in South Asia / Indian Subcontinent (1656–2010)". Soy Info Center. ISBN 978-1-928914-31-0. Retrieved February 18, 2012.
  93. Ross, Kate (November 16, 2011). "Soy Substitute Edges Its Way Into European Meals". New York Times. Retrieved February 28, 2015.
  94. http://www.telegraph.co.uk/history/world-war-two/9859294/Hitlers-food-taster-speaks-of-Fuhrers-vegetarian-diet.html
  95. Shurtleff, W.; Aoyagi, A. 2015. "History of Soybeans and Soyfoods in Austria and Switzerland (1781-2015)." Lafayette, California: Soyinfo Center. 705 pp. (1444 references; 128 photos and illustrations). Free online. ISBN 978-1-928914-77-8.
  96. Shurtleff, W.; Aoyagi, A.; 2015. "History of Soybeans and Soyfood in France (1665-2015)". Lafayette, California; Soyinfo Center. 1,202 pp. (3,405 references; 145 photos and illustrations. Free online).
  97. Shurtleff, W.; Aoyagi, A. 2015. "History of Soybeans and Soyfoods in Greece, the European Union and Small Western European Countries (1939-2015)." Lafayette, California: Soyinfo Center. 243 pp. (462 references; 20 photos and illustrations. Free online. ISBN 978-1-928914-81-5).
  98. Shurtleff, W.; Aoyagi, A. 2015. "History of Soybeans and Soyfoods in Italy (1597-2015)." Lafayette, California: Soyinfo Center. 618 pp. (1,381 references; 93 photos and illustrations. Free online).
  99. /Shurtleff, W.; Aoyagi, A. 2015. "History of Soybeans and Soyfoods in Spain and Portugal (1603-2015)." Lafayette, California: Soyinfo Center. (624 references; 23 photos and illustrations. Free online.)
  100. Padgette, S. R.; Kolacz, K. H.; Delannay, X.; Re, D. B.; Lavallee, B. J.; Tinius, C. N.; Rhodes, W. K.; Otero, Y. I.; et al. (1995). "Development, Identification, and Characterization of a Glyphosate-Tolerant Soybean Line". Crop Science 35 (5): 1451–1461. doi:10.2135/cropsci1995.0011183X003500050032x.
  101. National Agricultural Statistics Board annual report, June 30, 2010. Retrieved July 23, 2010.
  102. Liu, KeShun (1997). Soybeans: Chemistry, Technology, and Utilization. Berlin: Springer. p. 532. ISBN 0-8342-1299-4.
  103. Sneller CH (2003). "Impact of Transgenic Genotypes and Subdivision on Diversity Within Elite North American Soybean Germplasm". Crop Science 43: 409–414. doi:10.2135/cropsci2003.0409.
  104. "EU Caught in Quandary Over GMO Animal Feed Imports". The Guardian. December 7, 2007.
  105. Fernandez-Cornejo, J.; Caswell, Margriet (April 1, 2006). "The First Decade of Genetically Engineered Crops in the United States" (PDF). United States Department of Agriculture. Retrieved February 18, 2012.
  106. http://www.nytimes.com/2009/12/18/business/18seed.html?_r=0
  107. http://extension.udel.edu/kentagextension/2008/11/18/soybean-seed-decisions-2009/
  108. Schmutz, Jeremy; Cannon, Steven B.; Schlueter, Jessica; Ma, Jianxin; Mitros, Therese; Nelson, William; Hyten, David L.; Song, Qijian; Thelen, Jay J.; Cheng, Jianlin; Xu, Dong; Hellsten, Uffe; May, Gregory D.; Yu, Yeisoo; Sakurai, Tetsuya; Umezawa, Taishi; Bhattacharyya, Madan K.; Sandhu, Devinder; Valliyodan, Babu; Lindquist, Erika; Peto, Myron; Grant, David; Shu, Shengqiang; Goodstein, David; Barry, Kerrie; Futrell-Griggs, Montona; Abernathy, Brian; Du, Jianchang; Tian, Zhixi; Zhu, Liucun; Gill, Navdeep; Joshi, Trupti; Libault, Marc; Sethuraman, Anand; Zhang, Xue-Cheng; Shinozaki, Kazuo; Nguyen, Henry T.; Wing, Rod A.; Cregan, Perry; Specht, James; Grimwood, Jane; Rokhsar, Dan; Stacey, Gary; Shoemaker, Randy C.; Jackson, Scott A. (January 14, 2010). "Genome sequence of the palaeopolyploid soybean". Nature (Nature Publishing Group) 463 (7278): 178–83. Bibcode:2010Natur.463..178S. doi:10.1038/nature08670. ISSN 1476-4687. OCLC 01586310. PMID 20075913. Retrieved May 10, 2014.
  109. "Soybean Genome Sequenced: Analysis Reveals Pathways for Improving Biodiesel, Disease Resistance, and Reducing Waste Runoff". Science Daily. January 13, 2010. Retrieved February 18, 2012.
  110. "Canola Oil". Soyatech. Retrieved February 18, 2012.
  111. 1 2 "Livestock's long shadow: environmental issues and options". www.fao.org. Retrieved 2016-01-15.
  112. Lusas, Edmund W.; Riaz, Mian N. (1995). "Soy Protein Products: Processing and Use" (PDF). Journal of Nutrition (125): 573S–580S.
  113. 1 2 3 4 5 6 7 Lim 2012, p. 637.
  114. http://link.springer.com/article/10.1007%2FBF02664977#page-1
  115. http://pubs.acs.org/doi/abs/10.1021/ba-1966-0057.ch008
  116. http://cornell-classic.univcomm.cornell.edu/search/?tab=facts&id=188
  117. http://www.motherearthnews.com/real-food/whole-wheat-bread-mccays-miracle-loaf-zmaz81sozhun.aspx
  118. http://articles.chicagotribune.com/1987-05-21/entertainment/8702070654_1_amino-acids-soy-flour-nonfat-dry-milk
  119. Miniello, VL; Moro, GE; Tarantino, M; Natile, M; Granieri, L; Armenio, L (2003). "Soy-based Formulas and Phyto-oestrogens: A Safety Profile". Acta Paediatrica (Wiley-Blackwell) 91 (441): 93–100. doi:10.1111/j.1651-2227.2003.tb00655.x. PMID 14599051.
  120. Giampietro, P.G.; Bruno, G.; Furcolo, G.; Casati, A.; Brunetti, E.; Spadoni, G.L.; Galli, E. (2004). "Soy Protein Formulas in Children: No Hormonal Effects in Long-term Feeding". Journal of Pediatric Endocrinology and Metabolism (Freund Publishing House) 17 (2): 191–196. doi:10.1515/JPEM.2004.17.2.191. PMID 15055353.
  121. Strom, B. L.; Schinnar, R; Ziegler, EE; Barnhart, KT; Sammel, MD; MacOnes, GA; Stallings, VA; Drulis, JM; et al. (2001). "Exposure to Soy-Based Formula in Infancy and Endocrinological and Reproductive Outcomes in Young Adulthood". JAMA: the Journal of the American Medical Association (American Medical Association) 286 (7): 807–814. doi:10.1001/jama.286.7.807. PMID 11497534.
  122. 1 2 Merritt, Russell J.; Jenks, Belinda H. (2004). "Safety of Soy-Based Infant Formulas Containing Isoflavones: The Clinical Evidence". The Journal of Nutrition (The American Society for Nutritional Sciences) 134 (5): 1220S–1224S. PMID 15113975.
  123. Hoogenkamp, Henk W. (2005). Soy Protein and Formulated Meat Products. Wallingford, Oxon, UK: CABI Publishing. p. 14. ISBN 0-85199-864-X. Retrieved February 18, 2012.
  124. Endres, Joseph G. (2001). Soy Protein Products. Champaign-Urbana, IL: AOCS Publishing. pp. 43–44. ISBN 1-893997-27-8. Retrieved February 18, 2012.
  125. Circle, Sidney Joseph; Smith, Allan H. (1972). Soybeans: Chemistry and Technology. Westport, CT: Avi Publishing. pp. 7, 350. ISBN 0-87055-111-6. Retrieved February 18, 2012.
  126. Liu, KeShun (1997). Soybeans : Chemistry, Technology, and Utilization. Gaithersburg, MD: Aspen Publishers. p. 69. ISBN 0-8342-1299-4. Retrieved February 18, 2012.
  127. http://www.soynutbutter.com
  128. "Sustainability Fact Sheet" (PDF). National Biodiesel Board. April 2008. Retrieved February 18, 2012.
  129. "How Vodka is Made". Martini Muse. Retrieved February 18, 2012.
  130. "Soy Bean Soup is Pressed into Auto Parts". Popular Mechanics (Hearst Magazines) 64 (4): 513. April 1936. ISSN 0032-4558.
  131. Marji McCullough, ScD, RD (2 August 2012). "The Bottom Line on Soy and Breast Cancer Risk". American Cancer Society. Retrieved August 2013.
  132. Song TT, Hendrich S, Murphy PA (1999). "Estrogenic activity of glycitein, a soy isoflavone". Journal of Agricultural and Food Chemistry 47 (4): 1607–1610. doi:10.1021/jf981054j. PMID 10564025.
  133. 1 2 Sacks, F. M.; Lichtenstein, A.; Van Horn, L.; Harris, W.; Kris-Etherton, P.; Winston, M.; American Heart Association Nutrition Committee (February 21, 2006). "Soy Protein, Isoflavones, and Cardiovascular Health: An American Heart Association Science Advisory for Professionals from the Nutrition Committee". Circulation (American Heart Association Nutrition Committee) 113 (7): 1034–1044. doi:10.1161/CIRCULATIONAHA.106.171052. PMID 16418439.
  134. "Soy Isoflavones". Iowa State University. Retrieved February 19, 2012.
  135. Kim, Hyo Jung; Suh, Hwa-Jin; Lee, Choong Hwan; Kim, Jeong Hwan; Kang, Sun Chul; Park, Sunmin; Kim, Jong-Sang (2010). "Antifungal Activity of Glyceollins Isolated From Soybean Elicited with Aspergillus Sojae". Journal of Agricultural and Food Chemistry (American Chemical Society) 58 (17): 9483–9487. doi:10.1021/jf101694t. PMID 20666365.
  136. Tilghman, Syreeta L.; Boué, Stephen M.; Burow, Matthew E. (2010). "Glyceollins, a Novel Class of Antiestrogenic Phytoalexins" (PDF). Molecular and Cellular Pharmacology (LumiText Publishing) 2 (4): 155–160. doi:10.4255/mcpharmacol.10.21.
  137. "How do Front & Back Package Labels Influence Beliefs About Health Claims?". Cornell University Food and Brand Lab. Retrieved February 19, 2012.
  138. Anderson, James W.; Johnstone, Bryan M.; Cook-Newell, Margaret E. (1995). "Meta-Analysis of the Effects of Soy Protein Intake on Serum Lipids". New England Journal of Medicine (Massachusetts Medical Society) 333 (5): 276–282. doi:10.1056/NEJM199508033330502. PMID 7596371.
  139. "Study Casts Doubt On Soy's Health Benefits". Consumer Affairs. August 3, 2005. Retrieved February 19, 2012.
  140. "RE: Docket No. 2007N0-464" (PDF). Weston A. Price Foundation. Archived from the original (PDF) on October 25, 2011. Retrieved February 19, 2012.
  141. Messina, M. J. (March 2003). "Potential Public Health Implications of the Hypocholesterolemic Effects of Soy Protein". Nutrition (Burbank, Los Angeles County, Calif.) (BioMed Central) 19 (3): 280–281. doi:10.1016/S0899-9007(02)00995-4. PMID 12620535.
  142. Jenkins, David J. A.; Mirrahimi, Arash; Srichaikul, Korbua; Berryman, Claire E.; Wang, Li; Carleton, Amanda; Abdulnour, Shahad; Sievenpiper, John L.; et al. (December 2010). "Soy Protein Reduces Serum Cholesterol by Both Intrinsic and Food Displacement Mechanisms". The Journal of Nutrition (American Society for Nutrition) 140 (12): 2302S–2311S. doi:10.3945/jn.110.124958. PMID 20943954.
  143. Zhan, Siyan; Ho, Suzanne C. (December 2005). "Meta-Analysis of the Effects of Soy Protein Containing Isoflavones on the Lipid Profile". American Journal of Clinical Nutrition (American Society for Nutrition) 81 (2): 397–408. PMID 15699227.
  144. Harland, J. I.; Haffner, T. A. (September 2008). "Systematic Review, Meta-analysis and Regression of Randomised Controlled Trials Reporting an Association Between an Intake of Circa 25 g Soya Protein Per Day and Blood Cholesterol". Atherosclerosis (European Atherosclerosis Society) 200 (1): 13–27. doi:10.1016/j.atherosclerosis.2008.04.006. PMID 18534601.
  145. Reynolds, K.; Chin, A.; Lees, K. A.; Nguyen, A.; Bujnowski, D.; He, J. (September 2006). "A Meta-analysis of the Effect of Soy Protein Supplementation on Serum Lipids". The American Journal of Cardiology (American College of Cardiology.) 98 (5): 633–40. doi:10.1016/j.amjcard.2006.03.042. PMID 16923451.
  146. Santo, Antonio S.; Santo, Ariana M.; Browne, Richard W.; Burton, Harold; Leddy, John J.; Horvath, Steven M.; Horvath, Peter J. (December 2010). "Postprandial Lipemia Detects the Effect of Soy Protein on Cardiovascular Disease Risk Compared with the Fasting Lipid Profile". Lipids (American Oil Chemists' Society) 45 (12): 1127–1138. doi:10.1007/s11745-010-3487-z. PMID 20981505.
  147. Vucenik, Ivana; Shamsuddin, AbulKalam M. (November 2003). "Cancer Inhibition by Inositol Hexaphosphate (IP6) and Inositol: From Laboratory to Clinic". The Journal of Nutrition (American Society for Nutrition) 133 (11): 3778S–3784S. PMID 14608114.
  148. Yoon, Jane H.; Thompson, Lilian U.; Jenkins, David J. A. (December 1983). "The Effect of Phytic Acid on In Vitro Rate of Starch Digestibility and Blood Glucose Response". American Journal of Clinical Nutrition (American Society for Nutrition) 38 (6): 835–842. PMID 6650445.
  149. Sudheer, Kumar M.; Sridhar, Reddy B.; Kiran, Babu S.; Bhilegaonkar, P. M.; Shirwaikar, A.; Unnikrishnan, M. K. (February 2004). "Antiinflammatory and Antiulcer Activities of Phytic Acid in Rats". Indian Journal of Experimental Biolotgy (National Institute of Science Communication and Information Resources) 42 (2): 179–185. PMID 15282951.
  150. Committee on Food Protection, Food and Nutrition Board, National Research Council (1973). "Phytates". Toxicants Occurring Naturally in Foods. Washington, DC: National Academy of Sciences. pp. 363–371. ISBN 978-0-309-02117-3.
  151. Cantani, A.; Lucenti P. (August 1997). "Natural History of Soy Allergy and/or Intolerance in Children, and Clinical Use of Soy-protein Formulas". Pediatric Journal of Allergy and Clinical Immunology (Wiley Online Library) 8 (2): 59–74. doi:10.1111/j.1399-3038.1997.tb00146.x. PMID 9617775.
  152. Cordle, C. T. (May 2004). "Soy Protein Allergy: Incidence and Relative Severity". Journal of Nutrition (The American Society for Nutritional Sciences) 134 (5): 1213S–1219S. PMID 15113974.
  153. Sampson, H. A. (May 1999). "Food Allergy, Part 1: Immunopathogenesis and Clinical Disorders". The Journal of Allergy and Clinical Immunology (American Academy of Allergy) 103 (5): 717–728. doi:10.1016/S0091-6749(99)70411-2. PMID 10329801.
  154. Mitchell, Julie H.; Cawood, Elizabeth; Kinniburgh, David; Provan, Anne; Collins, Andrew R.; Irvine, D. Stewart (June 2001). "Effect of a Phytoestrogen Food Supplement on Reproductive Health in Normal Males". Clinical Science (Biochemical Society (Great Britain)) 100 (6): 613–618. doi:10.1042/CS20000212. PMID 11352776.
  155. Oseni, T; Patel, R; Pyle, J; Jordan, VC (2008). "Selective Estrogen Receptor Modulators and Phytoestrogens.". Planta Med 74 (13): 1656–1665. doi:10.1055/s-0028-1088304.
  156. Adlercreutz, H.; Mazur, W.; Bartels, P.; Elomaa, V.; Watanabe, S.; Wähälä, K.; Landström, M.; Lundin, E.; et al. (March 2000). "Phytoestrogens and Prostate Disease". The Journal of Nutrition (American Society for Nutritional Sciences) 130 (3): 658S–659S. PMID 10702603.
  157. De Kleijn, M. J.; Van Der Schouw, Y. T.; Wilson, P. W.; Grobbee, D. E.; Jacques, P. F. (February 2002). "Dietary Intake of Phytoestrogens is Associated With a Favorable Metabolic Cardiovascular Risk Profile in Postmenopausal U.S. Women: The Framingham Study". The Journal of Nutrition (American Society for Nutritional Sciences) 132 (2): 276–282. PMID 11823590.
  158. Valsta, L.M.; Kilkkinen, A.; Mazur, W.; Nurmi, T.; Lampi, A-M.; Ovaskainen, M-L.; Korhonen, T.; Adlercreutz, H.; et al. (June 2003). "Phyto-oestrogen Database of Foods and Average Intake in Finland". British Journal of Nutrition (The Nutrition Society) 89 (5): S31–S38. doi:10.1079/BJN2002794.
  159. Thompson, Lilian U.; Boucher, Beatrice A.; Liu, Zhen; Cotterchio, Michelle; Kreiger, Nancy (2006). "Phytoestrogen Content of Foods Consumed in Canada, Including Isoflavones, Lignans, and Coumestan". Nutrition and Cancer (Wiley Online Library) 54 (2): 184–201. doi:10.1207/s15327914nc5402_5. PMID 16898863.
  160. Napier, India D., et al. "Testicular Development in Male Rats Is Sensitive to a Soy-Based Diet in the Neonatal Period." Biology of reproduction (2014): biolreprod-113.
  161. De Lemos, Mário L (September 2001). "Effects of Soy Phytoestrogens Genistein and Daidzein on Breast Cancer Growth". Annals of Pharmacotherapy (Harvey Whitney Books) 35 (9): 1118–1121. doi:10.1345/aph.10257. PMID 11573864.
  162. Messina, M.; McCaskill-Stevens, W.; Lampe, J. W. (September 2006). "Addressing the Soy and Breast Cancer Relationship: Review, Commentary, and Workshop Proceedings". JNCI Journal of the National Cancer Institute (National Cancer Institute) 98 (18): 1275–1284. doi:10.1093/jnci/djj356. PMID 16985246.
  163. Sonestedt, Emily; Ericson, Ulrika; Gullberg, Bo; Skog, Kerstin; Olsson, Håkan; Wirfält, Elisabet (October 2008). "Do Both Heterocyclic Amines and Omega-6 Polyunsaturated Fatty Acids Contribute to the Incidence of Breast Cancer in Postmenopausal Women of the Malmö Diet and Cancer Cohort?". International Journal of Cancer (John Wiley & Sons) 123 (7): 1637–1643. doi:10.1002/ijc.23394. PMID 18636564.
  164. Pala, V.; Krogh, V.; Muti, P.; Chajès, V.; Riboli, E.; Micheli, A.; Saadatian, M.; Sieri, S.; et al. (July 2001). "Erythrocyte Membrane Fatty Acids and Subsequent Breast Cancer: A Prospective Italian Study". Journal of the National Cancer Institute (National Cancer Institute) 93 (14): 1088–1095. doi:10.1093/jnci/93.14.1088. PMID 11459870.
  165. Dong, Jia-Yi; Qin, Li-Qiang (January 2011). "Soy Isoflavones Consumption and Risk of Breast Cancer Incidence or Recurrence: A Meta-analysis of Prospective Studies". Breast Cancer Research and Treatment (Springer) 125 (2): 315–323. doi:10.1007/s10549-010-1270-8. PMID 21113655.
  166. Hamilton-Reeves, Jill M.; Vazquez, Gabriela; Duval, Sue J.; Phipps, William R.; Kurzer, Mindy S.; Messina, Mark J. (2010). "Clinical studies show no effects of soy protein or isoflavones on reproductive hormones in men: Results of a meta-analysis". Fertility and Sterility 94 (3): 997–1007. doi:10.1016/j.fertnstert.2009.04.038. PMID 19524224.
  167. Heald, C. L.; Ritchie, M. R.; Bolton-Smith, C.; Morton, M. S.; Alexander, F. E. (2007). "Phyto-oestrogens and risk of prostate cancer in Scottish men". British Journal of Nutrition 98 (2): 388–96. doi:10.1017/S0007114507700703. PMID 17403269.
  168. Messina, Mark (2010). "Soybean isoflavone exposure does not have feminizing effects on men: A critical examination of the clinical evidence". Fertility and Sterility 93 (7): 2095–2104. doi:10.1016/j.fertnstert.2010.03.002. PMID 20378106.
  169. Yan, Lin; Spitznagel, Edward L (2009). "Soy consumption and prostate cancer risk in men: a revisit of a meta-analysis". The American Journal of Clinical Nutrition 89 (4): 1155–63. doi:10.3945/ajcn.2008.27029. PMID 19211820.
  170. Burguete MC, Torregrosa G, Pérez-Asensio FJ; Burguete M. C.; Torregrosa G.; Pérez-Asensio F. J.; Castelló-Ruiz M.; Salom J.B.; Gil J. V.; Alborch E.; et al. (February 2006). "Dietary Phytoestrogens Improve Stroke Outcome After Transient Focal Cerebral Ischemia in Rats". European Journal of Neuroscience (European Neuroscience Association) 23 (3): 703–710. doi:10.1111/j.1460-9568.2006.04599.x. PMID 16487152.
  171. File, Sandra E.; Hartley, David E.; Alom, Nazmul; Rattray, Marcus (February 2003). "Soya Phytoestrogens Change Cortical and Hippocampal Expression of BDNF mRNA in Male Rats". Neuroscience Letters (Elsevier) 338 (2): 135–138. doi:10.1016/S0304-3940(02)01391-5. PMID 12566171.
  172. White, Lon R.; Petrovitch, Webster; Ross, GW; Masaki, Kamal; Hardman, John; Nelson, James; Davis, Daron; Markesbery, William (April 2000). "Brain Aging and Midlife Tofu Consumption". Journal of the American College of Nutrition (American College of Nutrition) 19 (2): 242–255. doi:10.1080/07315724.2000.10718923. PMID 10763906.
  173. Sirtori, C. R. (2001). "Risks and Benefits of Soy Phytoestrogens in Cardiovascular Diseases, Cancer, Climacteric Symptoms and Osteoporosis". Drug Safety (International Society of Pharmacovigilance) 24 (9): 665–682. doi:10.2165/00002018-200124090-00003. PMID 11522120.
  174. Hogervorst, E.; Sadjimim, T.; Yesufu, A.; Kreager, P.; Rahardjo, T. B. (2008). "High Tofu Intake is Associated with Worse Memory in Elderly Indonesian Men and Women". Dementia and Geriatric Cognitive Disorders (Karger AG) 26 (1): 50–57. doi:10.1159/000141484. PMID 18583909.
  175. Soy Oh Soy! Is it really bad for you? by David Schardt
  176. Dethloff, L.; Barr, B.; Bestervelt, L.; Bulera, S.; Sigler, R.; Lagattuta, M.; De La Iglesia, F. (May 2000). "Gabapentin-Induced Mitogenic Activity in Rat Pancreatic Acinar Cells". Toxicological Sciences (Society of Toxicology) 55 (1): 52–59. doi:10.1093/toxsci/55.1.52. PMID 10788559.
  177. Roebuck, B. D.; Kaplita, P. V.; Edwards, B. R.; Praissman, M. (March 1987). "Effects of Dietary Fats and Soybean Protein on Azaserine-induced Pancreatic Carcinogenesis and Plasma Cholecystokinin in the Rat". Cancer Research (American Association for Cancer Research.) 47 (5): 1333–1338. PMID 3815341.
  178. Roebuck, B. D. (1986). "Enhancement of Pancreatic Carcinogenesis by Raw Soy Protein Isolate: Quantitative Rat Model and Nutritional Considerations". Advances in Experimental Medicine and Biology. Advances in Experimental Medicine and Biology (Kluwer Academic) 199: 91–107. doi:10.1007/978-1-4757-0022-0_5. ISBN 978-1-4757-0024-4. PMID 3799291.
  179. Sarkar, F.; Banerjee, S.; Li, Y. (November 2007). "Pancreatic Cancer: Pathogenesis, Prevention and Treatment". Toxicology and Applied Pharmacology (Academic Press) 224 (3): 326–336. doi:10.1016/j.taap.2006.11.007. PMC 2094388. PMID 17174370.
  180. "Soy". US National Institutes of Health. 2011-05-05. Retrieved 2012-10-10.
  181. Choi HK, Atkinson K, Karlson EW, Willett W, Curhan G (March 2004). "Purine-rich foods, dairy and protein intake, and the risk of gout in men". N. Engl. J. Med. 350 (11): 1093–103. doi:10.1056/NEJMoa035700. PMID 15014182.
  182. Weaver AL (July 2008). "Epidemiology of gout". Cleve Clin J Med. 75 Suppl 5: S9–12. doi:10.3949/ccjm.75.Suppl_5.S9. PMID 18819329.
  183. "SAFEX Commodity Derivatives Market". Johannesburg Stock Exchange. Retrieved February 19, 2012.
  184. "交易所动态". Dalian Commodity Exchange. Retrieved February 19, 2012.
  185. "Exchange Introduction". Dansai Commodities Exchange. Retrieved February 19, 2012.
  186. "Today's Market (Deferred)". Tokyo Grain Exchange. Retrieved February 19, 2012.

External links

Wikiquote has quotations related to: Soybean
Wikimedia Commons has media related to Soybean.
Wikisource has the text of the 1920 Encyclopedia Americana article Soy bean.
This article is issued from Wikipedia - version of the Tuesday, May 03, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.