Tetrapentagonal tiling
| Tetrapentagonal tiling | |
|---|---|
![]() Poincaré disk model of the hyperbolic plane | |
| Type | Hyperbolic uniform tiling |
| Vertex configuration | (4.5)2 |
| Schläfli symbol | r{5,4} rr{5,5} |
| Wythoff symbol | 2 | 5 4 5 5 | 2 |
| Coxeter diagram | |
| Symmetry group | [5,4], (*542) [5,5], (*552) |
| Dual | Order-5-4 rhombille tiling |
| Properties | Vertex-transitive edge-transitive |
In geometry, the tetrapentagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t1{4,5} or r{4,5}.
Symmetry
A half symmetry [1+,4,5] = [5,5] construction exists, which can be seen as two colors of pentagons. This coloring can be called a rhombipentapentagonal tiling.
Dual tiling
The dual tiling is made of rhombic faces and has a face configuration V4.5.4.5:
Related polyhedra and tiling
| Symmetry: [5,4], (*542) | [5,4]+, (542) | [5+,4], (5*2) | [5,4,1+], (*552) | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | |
| {5,4} | t{5,4} | r{5,4} | 2t{5,4}=t{4,5} | 2r{5,4}={4,5} | rr{5,4} | tr{5,4} | sr{5,4} | s{5,4} | h{4,5} | |
| Uniform duals | ||||||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | ||
| V54 | V4.10.10 | V4.5.4.5 | V5.8.8 | V45 | V4.4.5.4 | V4.8.10 | V3.3.4.3.5 | V3.3.5.3.5 | V55 | |
| Symmetry: [5,5], (*552) | [5,5]+, (552) | ||||||
|---|---|---|---|---|---|---|---|
= |
= |
= |
= |
= |
= |
= |
= |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
| {5,5} | t{5,5} |
r{5,5} | 2t{5,5}=t{5,5} | 2r{5,5}={5,5} | rr{5,5} | tr{5,5} | sr{5,5} |
| Uniform duals | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
| V5.5.5.5.5 | V5.10.10 | V5.5.5.5 | V5.10.10 | V5.5.5.5.5 | V4.5.4.5 | V4.10.10 | V3.3.5.3.5 |
| Symmetry *4n2 [n,4] |
Spherical | Euclidean | Compact hyperbolic | Paracompact | Noncompact | |||
|---|---|---|---|---|---|---|---|---|
| *342 [3,4] |
*442 [4,4] |
*542 [5,4] |
*642 [6,4] |
*742 [7,4] |
*842 [8,4]... |
*∞42 [∞,4] |
[ni,4] | |
| Figures | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
| Config. | (4.3)2 | (4.4)2 | (4.5)2 | (4.6)2 | (4.7)2 | (4.8)2 | (4.∞)2 | (4.ni)2 |
*5n2 symmetry mutations of quasiregular tilings: (5.n)2
| Symmetry *5n2 [n,5] |
Spherical | Hyperbolic | Paracompact | Noncompact | ||||
|---|---|---|---|---|---|---|---|---|
| *352 [3,5] |
*452 [4,5] |
*552 [5,5] |
*652 [6,5] |
*752 [7,5] |
*852 [8,5]... |
*∞52 [∞,5] |
[ni,5] | |
| Figures | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
| Config. | (5.3)2 | (5.4)2 | (5.5)2 | (5.6)2 | (5.7)2 | (5.8)2 | (5.∞)2 | (5.ni)2 |
| Rhombic figures |
![]() |
![]() |
![]() |
![]() |
||||
| Config. | V(5.3)2 | V(5.4)2 | V(5.5)2 | V(5.6)2 | V(5.7)2 | V(5.8)2 | V(5.∞)2 | V(5.∞)2 |
See also
| Wikimedia Commons has media related to Uniform tiling 4-5-4-5. |
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
External links
- Weisstein, Eric W., "Hyperbolic tiling", MathWorld.
- Weisstein, Eric W., "Poincaré hyperbolic disk", MathWorld.
- Hyperbolic and Spherical Tiling Gallery
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch
| ||||||||||||||||||||||||||||||||||||||
This article is issued from Wikipedia - version of the Sunday, October 26, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.








































