Rhombitetrapentagonal tiling
      
In geometry, the rhombitetrapentagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,2{4,5}.
 Dual tiling 
The dual is called the deltoidal tetrapentagonal tiling with face configuration V.4.4.4.5.
 
 Related polyhedra and tiling 
| Symmetry: [5,4], (*542) | [5,4]+, (542) | [5+,4], (5*2) | [5,4,1+], (*552) | 
|---|
|      |      |      |      |      |      |      |      |      |      | 
|  |  |  |  |  |  |  |  |  |  | 
| {5,4} | t{5,4} | r{5,4} | 2t{5,4}=t{4,5} | 2r{5,4}={4,5} | rr{5,4} | tr{5,4} | sr{5,4} | s{5,4} | h{4,5} | 
| Uniform duals | 
|      |      |      |      |      |      |      |      |      |      | 
|  |  |  |  |  |  |  |  |  |  | 
| V54 | V4.10.10 | V4.5.4.5 | V5.8.8 | V45 | V4.4.5.4 | V4.8.10 | V3.3.4.3.5 | V3.3.5.3.5 | V55 | 
 
| *n42 symmetry mutation of expanded tilings: n.4.4.4  | 
References
-  John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
-  "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678. 
See also
 External links