Rhombitetrapentagonal tiling
In geometry, the rhombitetrapentagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,2{4,5}.
Dual tiling
The dual is called the deltoidal tetrapentagonal tiling with face configuration V.4.4.4.5.
Related polyhedra and tiling
Symmetry: [5,4], (*542) |
[5,4]+, (542) |
[5+,4], (5*2) |
[5,4,1+], (*552) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{5,4} |
t{5,4} |
r{5,4} |
2t{5,4}=t{4,5} |
2r{5,4}={4,5} |
rr{5,4} |
tr{5,4} |
sr{5,4} |
s{5,4} |
h{4,5} |
Uniform duals |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V54 |
V4.10.10 |
V4.5.4.5 |
V5.8.8 |
V45 |
V4.4.5.4 |
V4.8.10 |
V3.3.4.3.5 |
V3.3.5.3.5 |
V55 |
*n42 symmetry mutation of expanded tilings: n.4.4.4 |
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
See also
External links