SLC34A3
Sodium-dependent phosphate transport protein 2C is a protein that in humans is encoded by the SLC34A3 gene.[1][2][3][4]
Function
SLC34A3 contributes to the maintenance of inorganic phosphate concentration at the kidney.[4]
Interactions
SLC34A3 has been shown to interact with PDZK1.[5]
Clinical Correlation
A mutation in the SLC34A3 gene has been known to cause the autosomal recessive condition hereditary hypophophatemic rickets with hypercalciuria. This gene is correlated closely with SLC34A1, an analogue sodium phosphate cotransporter protein. Symptoms include renal phosphate wasting in addition to increase levels of 1,25-dihydroxyvitamin D (yields the hypercalcuria).[2]
See also
- SLC34A3 protein, human at the US National Library of Medicine Medical Subject Headings (MeSH)
References
- ↑ Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, Tatsumi S, Miyamoto K (May 2002). "Growth-related renal type II Na/Pi cotransporter". J Biol Chem 277 (22): 19665–72. doi:10.1074/jbc.M200943200. PMID 11880379.
- 1 2 Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J, Tiosano D, Gershoni-Baruch R, Albers N, Lichtner P, Schnabel D, Hochberg Z, Strom TM (Jan 2006). "Hereditary Hypophosphatemic Rickets with Hypercalciuria Is Caused by Mutations in the Sodium-Phosphate Cotransporter Gene SLC34A3". Am J Hum Genet 78 (2): 193–201. doi:10.1086/499410. PMC 1380229. PMID 16358215.
- ↑ Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, Frappier D, Burkett K, Carpenter TO, Anderson D, Garabedian M, Sermet I, Fujiwara TM, Morgan K, Tenenhouse HS, Juppner H (Jan 2006). "SLC34A3 Mutations in Patients with Hereditary Hypophosphatemic Rickets with Hypercalciuria Predict a Key Role for the Sodium-Phosphate Cotransporter NaPi-IIc in Maintaining Phosphate Homeostasis". Am J Hum Genet 78 (2): 179–92. doi:10.1086/499409. PMC 1380228. PMID 16358214.
- 1 2 "Entrez Gene: SLC34A3 solute carrier family 34 (sodium phosphate), member 3".
- ↑ Gisler SM, Pribanic S, Bacic D, Forrer P, Gantenbein A, Sabourin LA, Tsuji A, Zhao ZS, Manser E, Biber J, Murer H (November 2003). "PDZK1: I. a major scaffolder in brush borders of proximal tubular cells". Kidney Int. 64 (5): 1733–45. doi:10.1046/j.1523-1755.2003.00266.x. PMID 14531806.
Further reading
- Forster IC, Hernando N, Biber J, Murer H (2006). "Proximal tubular handling of phosphate: A molecular perspective". Kidney Int. 70 (9): 1548–59. doi:10.1038/sj.ki.5001813. PMID 16955105.
- Yamamoto T, Michigami T, Aranami F, et al. (2007). "Hereditary hypophosphatemic rickets with hypercalciuria: a study for the phosphate transporter gene type IIc and osteoblastic function". J. Bone Miner. Metab. 25 (6): 407–13. doi:10.1007/s00774-007-0776-6. PMID 17968493.
- Ehnes C, Forster IC, Bacconi A, et al. (2005). "Structure–Function Relations of the First and Fourth Extracellular Linkers of the Type IIa Na+/Pi Cotransporter: II. Substrate Interaction and Voltage Dependency of Two Functionally Important Sites". J. Gen. Physiol. 124 (5): 489–503. doi:10.1085/jgp.200409061. PMC 2234003. PMID 15504899.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039.
- Gisler SM, Pribanic S, Bacic D, et al. (2004). "PDZK1: I. a major scaffolder in brush borders of proximal tubular cells". Kidney Int. 64 (5): 1733–45. doi:10.1046/j.1523-1755.2003.00266.x. PMID 14531806.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.
|
This article is issued from Wikipedia - version of the Saturday, October 24, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.