SLC26A2
The SLC26A2 protein is a member of the solute carrier family. In humans, this transporter is encoded by the SLC26A2 gene.[1]
Function
The diastrophic dysplasia sulfate transporter is a transmembrane glycoprotein implicated in the pathogenesis of several human chondrodysplasias. It apparently is critical in cartilage for sulfation of proteoglycans and extracellular matrix organization.[2]
Clinical significance
Deficiencies are associated with many forms of osteochondrodysplasia.[3] These include:
- achondrogenesis type 1B
- diastrophic dysplasia
- atelosteogenesis, type II
- recessive multiple epiphyseal dysplasia
References
- ↑ Hästbacka J, de la Chapelle A, Mahtani MM, Clines G, Reeve-Daly MP, Daly M, Hamilton BA, Kusumi K, Trivedi B, Weaver A (September 1994). "The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping". Cell 78 (6): 1073–87. doi:10.1016/0092-8674(94)90281-X. PMID 7923357.
- ↑ "Entrez Gene: SLC26A2".
- ↑ Forlino A, Piazza R, Tiveron C, et al. (March 2005). "A diastrophic dysplasia sulfate transporter (SLC26A2) mutant mouse: morphological and biochemical characterization of the resulting chondrodysplasia phenotype". Hum. Mol. Genet. 14 (6): 859–71. doi:10.1093/hmg/ddi079. PMID 15703192.
Further reading
- Rossi A, Kaitila I, Wilcox WR, et al. (1998). "Proteoglycan sulfation in cartilage and cell cultures from patients with sulfate transporter chondrodysplasias: relationship to clinical severity and indications on the role of intracellular sulfate production.". Matrix Biol. 17 (5): 361–9. doi:10.1016/S0945-053X(98)90088-9. PMID 9822202.
- Jakkula E, Mäkitie O, Czarny-Ratajczak M, et al. (2005). "Mutations in the known genes are not the major cause of MED; distinctive phenotypic entities among patients with no identified mutations.". Eur. J. Hum. Genet. 13 (3): 292–301. doi:10.1038/sj.ejhg.5201314. PMID 15523498.
- Bonafé L, Hästbacka J, de la Chapelle A, et al. (2008). "A novel mutation in the sulfate transporter gene SLC26A2 (DTDST) specific to the Finnish population causes de la Chapelle dysplasia.". J. Med. Genet. 45 (12): 827–31. doi:10.1136/jmg.2007.057158. PMID 18708426.
- Lohi H, Kujala M, Makela S, et al. (2002). "Functional characterization of three novel tissue-specific anion exchangers SLC26A7, -A8, and -A9.". J. Biol. Chem. 277 (16): 14246–54. doi:10.1074/jbc.M111802200. PMID 11834742.
- Lamb R, Thomson W, et al. (2007). "Positive association of SLC26A2 gene polymorphisms with susceptibility to systemic-onset juvenile idiopathic arthritis.". Arthritis Rheum. 56 (4): 1286–91. doi:10.1002/art.22444. PMID 17393463.
- Ikeda T, Mabuchi A, Fukuda A, et al. (2001). "Identification of sequence polymorphisms in two sulfation-related genes, PAPSS2 and SLC26A2, and an association analysis with knee osteoarthritis.". J. Hum. Genet. 46 (9): 538–43. doi:10.1007/s100380170036. PMID 11558903.
- Mégarbané A, Haddad FA, Haddad-Zebouni S, et al. (1999). "Homozygosity for a novel DTDST mutation in a child with a 'broad bone-platyspondylic' variant of diastrophic dysplasia.". Clin. Genet. 56 (1): 71–6. doi:10.1034/j.1399-0004.1999.560110.x. PMID 10466420.
- Markovich D (2001). "Physiological roles and regulation of mammalian sulfate transporters.". Physiol. Rev. 81 (4): 1499–533. PMID 11581495.
- Pecora F, Gualeni B, Forlino A, et al. (2006). "In vivo contribution of amino acid sulfur to cartilage proteoglycan sulfation.". Biochem. J. 398 (3): 509–14. doi:10.1042/BJ20060566. PMC 1559448. PMID 16719839.
- Olsen JV, Blagoev B, Gnad F, et al. (2006). "Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.". Cell 127 (3): 635–48. doi:10.1016/j.cell.2006.09.026. PMID 17081983.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
- Satoh H, Susaki M, Shukunami C, et al. (1998). "Functional analysis of diastrophic dysplasia sulfate transporter. Its involvement in growth regulation of chondrocytes mediated by sulfated proteoglycans.". J. Biol. Chem. 273 (20): 12307–15. doi:10.1074/jbc.273.20.12307. PMID 9575183.
- Mäkitie O, Savarirayan R, Bonafé L, et al. (2003). "Autosomal recessive multiple epiphyseal dysplasia with homozygosity for C653S in the DTDST gene: double-layer patella as a reliable sign.". Am. J. Med. Genet. A 122A (3): 187–92. doi:10.1002/ajmg.a.20282. PMID 12966518.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2002). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Lohi H, Kujala M, Kerkelä E, et al. (2000). "Mapping of five new putative anion transporter genes in human and characterization of SLC26A6, a candidate gene for pancreatic anion exchanger.". Genomics 70 (1): 102–12. doi:10.1006/geno.2000.6355. PMID 11087667.
- Galante LL, Schwarzbauer JE (2007). "Requirements for sulfate transport and the diastrophic dysplasia sulfate transporter in fibronectin matrix assembly.". J. Cell Biol. 179 (5): 999–1009. doi:10.1083/jcb.200707150. PMC 2099202. PMID 18056413.
- Rossi A, Cetta G, Piazza R, et al. (2003). "In vitro proteoglycan sulfation derived from sulfhydryl compounds in sulfate transporter chondrodysplasias.". Pediatr Pathol Mol Med 22 (4): 311–21. doi:10.1080/15227950307720. PMID 14692227.
- Remes VM, Hästbacka JR, Poussa MS, Peltonen JI (2002). "Does genotype predict development of the spinal deformity in patients with diastrophic dysplasia?". Eur Spine J 11 (4): 327–31. doi:10.1007/s00586-002-0413-y. PMID 12193993.
- Haila S, Hästbacka J, Böhling T, et al. (2001). "SLC26A2 (diastrophic dysplasia sulfate transporter) is expressed in developing and mature cartilage but also in other tissues and cell types.". J. Histochem. Cytochem. 49 (8): 973–82. doi:10.1177/002215540104900805. PMID 11457925.
- Huang QY, Li GH, Kung AW (2009). "The -9247 T/C polymorphism in the SOST upstream regulatory region that potentially affects C/EBPalpha and FOXA1 binding is associated with osteoporosis.". Bone 45 (2): 289–94. doi:10.1016/j.bone.2009.03.676. PMID 19371798.
External links
- Bonafé, Luisa; Mittaz-Crettol, Lauréane; Ballhausen, Diana; Superti-Furga, Andrea (2014-01-23). Multiple Epiphyseal Dysplasia, Recessive. NBK1306. In Pagon RA, Bird TD, Dolan CR; et al., eds. (1993–). GeneReviews™ [Internet]. Seattle WA: University of Washington, Seattle. Check date values in:
|date=
(help)- Online 'Mendelian Inheritance in Man' (OMIM) Epiphyseal Dysplasia, Multiple, 1; EDM1 -132400
- Online 'Mendelian Inheritance in Man' (OMIM) Pendred Syndrome; PDS -274600
- Online 'Mendelian Inheritance in Man' (OMIM) Epiphyseal Dysplasia, Multiple, 4; EDM4 -226900
- Online 'Mendelian Inheritance in Man' (OMIM) Solute Carrier Family 26 (Sulfate Transporter), Member 2; SLC26A2 -606718
- Bonafé, Luisa; Mittaz-Crettol, Lauréane; Ballhausen, Diana; Superti-Furga, Andrea (2014-01-23). Atelosteogenesis Type 2. NBK1317. In GeneReviews
- Bonafé, Luisa; Mittaz-Crettol, Lauréane; Ballhausen, Diana; Superti-Furga, Andrea (2013-07-18). Diastrophic Dysplasia. NBK1350. In GeneReviews
- SLC26A2 protein, human at the US National Library of Medicine Medical Subject Headings (MeSH)
This article incorporates text from the United States National Library of Medicine, which is in the public domain.
|
This article is issued from Wikipedia - version of the Wednesday, September 02, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.