Metabotropic glutamate receptor 2
Metabotropic glutamate receptor 2 is a protein that in humans is encoded by the GRM2 gene.[1][2]
Function
L-glutamate is the major excitatory neurotransmitter in the central nervous system and activates both ionotropic and metabotropic glutamate receptors. Glutamatergic neurotransmission is involved in most aspects of normal brain function and can be perturbed in many neuropathologic conditions. The metabotropic glutamate receptors are a family of G protein-coupled receptors, that have been divided into 3 groups on the basis of sequence homology, putative signal transduction mechanisms, and pharmacologic properties. Group I includes GRM1 and GRM5 and these receptors have been shown to activate phospholipase C. Group II includes GRM2 (this receptor) and GRM3 while Group III includes GRM4, GRM6, GRM7 and GRM8. Group II and III receptors are linked to the inhibition of the cyclic AMP cascade but differ in their agonist selectivities.[2]
Role in hallucinogenesis
Many psychedelic drugs (e.g. LSD-25) produce their effects by binding to the oligomerized complexes of the 5HT2A and mGlu2 receptors.[3][4] Lisuride acts preferentially or exclusively on the non-heteromerized 5HT2A receptors, which are not capable of inducing psychedelic effects. Due to this, lisuride is capable of reducing the hallucinogenic effects of these drugs through competitive agonistic activity (producing the effect of a silent-agonist in the presence of these drugs).
Strong agonists for either subunit of the 5HT2A-mGlu2R heterocomplex suppress signaling through the partner subunit and inverse agonists for either subunit potentiate the signaling through the partner subunit.
Ligands
The development of subtype-2-selective positive allosteric modulators (PAMs) experienced steady advance in recent years.[5] mGluR2 potentiation is a new approach for the treatment of schizophrenia.[6] On the other hand, antagonists and negative allosteric modulators of mGluR2/3 have potential as antidepressant drugs.[7][8][9][10]
PAMs
- ADX-71149[12]
- GSK1331258[13]
- Imidazo[1,2-a]pyridines[14]
- 3-Aryl-5-phenoxymethyl-1,3-oxazolidin-2-ones[15]
- 3-(Imidazolyl methyl)-3-aza-bicyclo[3.1.0]hexan-6-yl)methyl ethers: potent, orally stable[16]
- BINA:[17][18] potent; modest ago-allosteric modulator; robust in-vivo activity.
- LY-487,379:[19][20][21] devoid of orthosteric activity; along with related 3-pyridylmethylsulfonamides[22][23] the first subtype-2-selective potentiator published (2003).
Antagonists
NAMs
- 7,8-dichloro-4-[3-(2-methylpyridin-4-yl)phenyl]-1,3-dihydro-1,5-benzodiazepin-2-one and related compounds.[24]
- MNI-137 - 8-bromo-4-(2-cyanopyridin-4-yl)-1H-benzo[b][1,4]diazepin-2(3H)-one[25]
- RO4491533 - 4-[3-(2,6-dimethylpyridin-4-yl)phenyl]-7-methyl-8-trifluoromethyl-1,3-dihydrobenzo[b][1,4]diazepin-2-one[26]
Protein–protein interactions
The metabotropic glutamate receptor 2 is able to form a heteromeric complex with its isoform mGluR4. This heteromer exhibits a pharmacological profile distinct from the parent receptor monomers.[27]
See also
References
- ↑ Flor PJ, Lindauer K, Püttner I, Rüegg D, Lukic S, Knöpfel T, Kuhn R (April 1995). "Molecular cloning, functional expression and pharmacological characterization of the human metabotropic glutamate receptor type 2". The European Journal of Neuroscience 7 (4): 622–9. doi:10.1111/j.1460-9568.1995.tb00666.x. PMID 7620613.
- 1 2 "Entrez Gene: GRM2 glutamate receptor, metabotropic 2".
- ↑ Moreno JL, Miranda-Azpiazu P, García-Bea A, Younkin J, Cui M, Kozlenkov A, Ben-Ezra A, Voloudakis G, Fakira AK, Baki L, Ge Y, Georgakopoulos A, Morón JA, Milligan G, López-Giménez JF, Robakis NK, Logothetis DE, Meana JJ, González-Maeso J. "Allosteric signaling through an mGlu2 and 5-HT2A heteromeric receptor complex and its potential contribution to schizophrenia". Science Signaling 9 (410): ra5. doi:10.1126/scisignal.aab0467. PMID 26758213.
- ↑ Baki L, Fribourg M, Younkin J, Eltit JM, Moreno JL, Park G, Vysotskaya Z, Narahari A, Sealfon SC, Gonzalez-Maeso J, Logothetis DE (January 2016). "Cross-signaling in metabotropic glutamate 2 and serotonin 2A receptor heteromers in mammalian cells". Pflugers Archiv. doi:10.1007/s00424-015-1780-7. PMID 26780666.
- ↑ Fraley ME (September 2009). "Positive allosteric modulators of the metabotropic glutamate receptor 2 for the treatment of schizophrenia". Expert Opinion on Therapeutic Patents 19 (9): 1259–75. doi:10.1517/13543770903045009. PMID 19552508.
- ↑ Conn PJ, Jones CK (January 2009). "Promise of mGluR2/3 activators in psychiatry". Neuropsychopharmacology 34 (1): 248–9. doi:10.1038/npp.2008.156. PMC 2907744. PMID 19079073.
- ↑ Kawashima N, Karasawa J, Shimazaki T, Chaki S, Okuyama S, Yasuhara A, Nakazato A (April 2005). "Neuropharmacological profiles of antagonists of group II metabotropic glutamate receptors". Neuroscience Letters 378 (3): 131–4. doi:10.1016/j.neulet.2004.12.021. PMID 15781145.
- ↑ Bespalov AY, van Gaalen MM, Sukhotina IA, Wicke K, Mezler M, Schoemaker H, Gross G (September 2008). "Behavioral characterization of the mGlu group II/III receptor antagonist, LY-341495, in animal models of anxiety and depression". European Journal of Pharmacology 592 (1-3): 96–102. doi:10.1016/j.ejphar.2008.06.089. PMID 18634781.
- ↑ Dwyer JM, Lepack AE, Duman RS (May 2012). "mTOR activation is required for the antidepressant effects of mGluR₂/₃ blockade". The International Journal of Neuropsychopharmacology / Official Scientific Journal of the Collegium Internationale Neuropsychopharmacologicum 15 (4): 429–34. doi:10.1017/S1461145711001702. PMC 3580765. PMID 22114864.
- ↑ Koike H, Fukumoto K, Iijima M, Chaki S (February 2013). "Role of BDNF/TrkB signaling in antidepressant-like effects of a group II metabotropic glutamate receptor antagonist in animal models of depression". Behavioural Brain Research 238: 48–52. doi:10.1016/j.bbr.2012.10.023. PMID 23098797.
- ↑ Dhanya RP, Sidique S, Sheffler DJ, Nickols HH, Herath A, Yang L, Dahl R, Ardecky R, Semenova S, Markou A, Conn PJ, Cosford ND (January 2011). "Design and synthesis of an orally active metabotropic glutamate receptor subtype-2 (mGluR2) positive allosteric modulator (PAM) that decreases cocaine self-administration in rats". Journal of Medicinal Chemistry 54 (1): 342–53. doi:10.1021/jm1012165. PMC 3071440. PMID 21155570.
- ↑ addextherapeutics – ADX71149 for schizophrenia
- ↑ D'Alessandro PL, Corti C, Roth A, Ugolini A, Sava A, Montanari D, Bianchi F, Garland SL, Powney B, Koppe EL, Rocheville M, Osborne G, Perez P, de la Fuente J, De Los Frailes M, Smith PW, Branch C, Nash D, Watson SP (January 2010). "The identification of structurally novel, selective, orally bioavailable positive modulators of mGluR2". Bioorganic & Medicinal Chemistry Letters 20 (2): 759–62. doi:10.1016/j.bmcl.2009.11.032. PMID 20005096.
- ↑ Tresadern G, Cid JM, Macdonald GJ, Vega JA, de Lucas AI, García A, Matesanz E, Linares ML, Oehlrich D, Lavreysen H, Biesmans I, Trabanco AA (January 2010). "Scaffold hopping from pyridones to imidazo[1,2-a]pyridines. New positive allosteric modulators of metabotropic glutamate 2 receptor". Bioorganic & Medicinal Chemistry Letters 20 (1): 175–9. doi:10.1016/j.bmcl.2009.11.008. PMID 19932615.
- ↑ EJ Brnardic 2010
- ↑ Zhang L, Rogers BN, Duplantier AJ, McHardy SF, Efremov I, Berke H, Qian W, Zhang AQ, Maklad N, Candler J, Doran AC, Lazzaro JT, Ganong AH (October 2008). "3-(Imidazolyl methyl)-3-aza-bicyclo[3.1.0]hexan-6-yl)methyl ethers: a novel series of mGluR2 positive allosteric modulators". Bioorganic & Medicinal Chemistry Letters 18 (20): 5493–6. doi:10.1016/j.bmcl.2008.09.026. PMID 18812259.
- ↑ Galici R, Jones CK, Hemstapat K, Nong Y, Echemendia NG, Williams LC, de Paulis T, Conn PJ (July 2006). "Biphenyl-indanone A, a positive allosteric modulator of the metabotropic glutamate receptor subtype 2, has antipsychotic- and anxiolytic-like effects in mice". The Journal of Pharmacology and Experimental Therapeutics 318 (1): 173–85. doi:10.1124/jpet.106.102046. PMID 16608916.
- ↑ Bonnefous C, Vernier JM, Hutchinson JH, Gardner MF, Cramer M, James JK, Rowe BA, Daggett LP, Schaffhauser H, Kamenecka TM (October 2005). "Biphenyl-indanones: allosteric potentiators of the metabotropic glutamate subtype 2 receptor". Bioorganic & Medicinal Chemistry Letters 15 (19): 4354–8. doi:10.1016/j.bmcl.2005.06.062. PMID 16046122.
- ↑ Johnson MP, Baez M, Jagdmann GE, Britton TC, Large TH, Callagaro DO, Tizzano JP, Monn JA, Schoepp DD (July 2003). "Discovery of allosteric potentiators for the metabotropic glutamate 2 receptor: synthesis and subtype selectivity of N-(4-(2-methoxyphenoxy)phenyl)-N-(2,2,2- trifluoroethylsulfonyl)pyrid-3-ylmethylamine". Journal of Medicinal Chemistry 46 (15): 3189–92. doi:10.1021/jm034015u. PMID 12852748.
- ↑ Johnson MP, Barda D, Britton TC, Emkey R, Hornback WJ, Jagdmann GE, McKinzie DL, Nisenbaum ES, Tizzano JP, Schoepp DD (April 2005). "Metabotropic glutamate 2 receptor potentiators: receptor modulation, frequency-dependent synaptic activity, and efficacy in preclinical anxiety and psychosis model(s)". Psychopharmacology 179 (1): 271–83. doi:10.1007/s00213-004-2099-9. PMID 15717213.
- ↑ Schaffhauser H, Rowe BA, Morales S, Chavez-Noriega LE, Yin R, Jachec C, Rao SP, Bain G, Pinkerton AB, Vernier JM, Bristow LJ, Varney MA, Daggett LP (October 2003). "Pharmacological characterization and identification of amino acids involved in the positive modulation of metabotropic glutamate receptor subtype 2". Molecular Pharmacology 64 (4): 798–810. doi:10.1124/mol.64.4.798. PMID 14500736.
- ↑ Barda DA, Wang ZQ, Britton TC, Henry SS, Jagdmann GE, Coleman DS, Johnson MP, Andis SL, Schoepp DD (June 2004). "SAR study of a subtype selective allosteric potentiator of metabotropic glutamate 2 receptor, N-(4-phenoxyphenyl)-N-(3-pyridinylmethyl)ethanesulfonamide". Bioorganic & Medicinal Chemistry Letters 14 (12): 3099–102. doi:10.1016/j.bmcl.2004.04.017. PMID 15149652.
- ↑ Pinkerton AB, Vernier JM, Schaffhauser H, Rowe BA, Campbell UC, Rodriguez DE, Lorrain DS, Baccei CS, Daggett LP, Bristow LJ (August 2004). "Phenyl-tetrazolyl acetophenones: discovery of positive allosteric potentiatiors for the metabotropic glutamate 2 receptor". Journal of Medicinal Chemistry 47 (18): 4595–9. doi:10.1021/jm040088h. PMID 15317469.
- ↑ Zhang MQ, Zhang XL, Li Y, Fan WJ, Wang YH, Hao M, Zhang SW, Ai CZ (2011). "Investigation on quantitative structure activity relationships and pharmacophore modeling of a series of mGluR2 antagonists". International Journal of Molecular Sciences 12 (9): 5999–6023. doi:10.3390/ijms12095999. PMC 3189765. PMID 22016641.
- ↑ Hemstapat K, Da Costa H, Nong Y, Brady AE, Luo Q, Niswender CM, Tamagnan GD, Conn PJ (July 2007). "A novel family of potent negative allosteric modulators of group II metabotropic glutamate receptors". The Journal of Pharmacology and Experimental Therapeutics 322 (1): 254–64. doi:10.1124/jpet.106.117093. PMID 17416742.
- ↑ Campo B, Kalinichev M, Lambeng N, El Yacoubi M, Royer-Urios I, Schneider M, Legrand C, Parron D, Girard F, Bessif A, Poli S, Vaugeois JM, Le Poul E, Celanire S (December 2011). "Characterization of an mGluR2/3 negative allosteric modulator in rodent models of depression". Journal of Neurogenetics 25 (4): 152–66. doi:10.3109/01677063.2011.627485. PMID 22091727.
- ↑ Yin S, Noetzel MJ, Johnson KA, Zamorano R, Jalan-Sakrikar N, Gregory KJ, Conn PJ, Niswender CM (January 2014). "Selective actions of novel allosteric modulators reveal functional heteromers of metabotropic glutamate receptors in the CNS". The Journal of Neuroscience 34 (1): 79–94. doi:10.1523/JNEUROSCI.1129-13.2014. PMC 3866496. PMID 24381270.
External links
- "Metabotropic Glutamate Receptors: mGlu2". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical Pharmacology.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.
|