KCNC2

Potassium channel, voltage gated Shaw related subfamily C, member 2
Identifiers
Symbols KCNC2 ; KV3.2
External IDs OMIM: 176256 MGI: 96668 HomoloGene: 71199 IUPHAR: 549 GeneCards: KCNC2 Gene
Orthologs
Species Human Mouse
Entrez 3747 268345
Ensembl ENSG00000166006 ENSMUSG00000035681
UniProt Q96PR1 Q14B80
RefSeq (mRNA) NM_001260497 NM_001025581
RefSeq (protein) NP_001247426 NP_001020752
Location (UCSC) Chr 12:
75.04 – 75.21 Mb
Chr 10:
112.27 – 112.47 Mb
PubMed search

Potassium voltage-gated channel subfamily C member 2 is a protein that in humans is encoded by the KCNC2 gene.[1][2][1] The protein encoded by this gene is a voltage-gated potassium channel subunit (Kv3.2).[3]

Expression pattern

Kv3.1 and Kv3.2 channels are prominently expressed in neurons that fire at high frequency. Kv3.2 channels are prominently expressed in brain (fast-spiking GABAergic interneurons of the neocortex, hippocampus, and caudate nucleus; terminal fields of thalamocortical projections), and in retinal ganglion cells.[4][5][3]

Physiological role

Kv3.1/Kv3.2 conductance is necessary and kinetically optimized for high-frequency action potential generation.[5][6] Sometimes in heteromeric complexes with Kv3.1; important for the high-frequency firing of fast spiking GABAergic interneurons and retinal ganglion cells; and GABA release via regulation of action potential duration in presynaptic terminals.[3][4]

Pharmacological properties

Kv3.2 currents in heterologous systems are highly sensitive to external tetraethylammonium (TEA) or 4-aminopyridine (4-AP) (IC50 values are 0.1 mM for both of the drugs).[3][5] This can be useful in identifying native channels.[5]

Transcript variants

There are four transcript variants of Kv3.2 gene: Kv3.2a, Kv3.2b, Kv3.2c, Kv3.2d. Kv3.2 isoforms differ only in their C-terminal sequence.[7]

References

  1. 1 2 Haas M, Ward DC, Lee J, Roses AD, Clarke V, D'Eustachio P, Lau D, Vega-Saenz de Miera E, Rudy B (Mar 1994). "Localization of Shaw-related K+ channel genes on mouse and human chromosomes". Mamm Genome 4 (12): 711–5. doi:10.1007/BF00357794. PMID 8111118.
  2. Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stuhmer W, Wang X (Dec 2005). "International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels". Pharmacol Rev 57 (4): 473–508. doi:10.1124/pr.57.4.10. PMID 16382104.
  3. 1 2 3 4 Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stühmer W, Wang X (December 2005). "International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels". Pharmacol. Rev. 57 (4): 473–508. doi:10.1124/pr.57.4.10. PMID 16382104.
  4. 1 2 Kolodin YO (2008-04-27). "Ionic conductances underlying excitability in tonically firing retinal ganglion cells of adult rat". Retrieved 2008-10-20.
  5. 1 2 3 4 Rudy B, McBain CJ (September 2001). "Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing". Trends in Neurosciences 24 (9): 517–26. doi:10.1016/S0166-2236(00)01892-0. PMID 11506885.
  6. Lien CC, Jonas P (March 2003). "Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons". Journal of Neuroscience 23 (6): 2058–68. PMID 12657664.
  7. Rudy B, Chow A, Lau D, Amarillo Y, Ozaita A, Saganich M, Moreno H, Nadal MS, Hernandez-Pineda R, Hernandez-Cruz A, Erisir A, Leonard C, Vega-Saenz de Miera E (April 1999). "Contributions of Kv3 channels to neuronal excitability". Annals of the New York Academy of Sciences 868 (1 MOLECULAR AND): 304–43. doi:10.1111/j.1749-6632.1999.tb11295.x. PMID 10414303.

External links


This article is issued from Wikipedia - version of the Wednesday, October 21, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.