GJB6
Gap junction protein, beta 6, 30kDa | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||||||
Symbols | GJB6 ; CX30; DFNA3; DFNA3B; DFNB1B; ECTD2; ED2; EDH; HED; HED2 | ||||||||||||
External IDs | OMIM: 604418 MGI: 107588 HomoloGene: 4936 IUPHAR: 717 GeneCards: GJB6 Gene | ||||||||||||
| |||||||||||||
Orthologs | |||||||||||||
Species | Human | Mouse | |||||||||||
Entrez | 10804 | 14623 | |||||||||||
Ensembl | ENSG00000121742 | ENSMUSG00000040055 | |||||||||||
UniProt | O95452 | P70689 | |||||||||||
RefSeq (mRNA) | NM_001110219 | NM_001010937 | |||||||||||
RefSeq (protein) | NP_001103689 | NP_001010937 | |||||||||||
Location (UCSC) |
Chr 13: 20.22 – 20.23 Mb |
Chr 14: 57.12 – 57.13 Mb | |||||||||||
PubMed search | |||||||||||||
Gap junction beta-6 protein (GJB6), also known as connexin 30 (Cx30) — is a protein that in humans is encoded by the GJB6 gene.[1][2][3] Connexin 30 (Cx30) is one of several gap junction proteins expressed in the inner ear.[4] Mutations in gap junction genes have been found to lead to both syndromic and nonsyndromic deafness.[5]
Function
The connexin gene family codes for the protein subunits of gap junction channels that mediate direct diffusion of ions and metabolites between the cytoplasm of adjacent cells. Connexins span the plasma membrane 4 times, with amino- and carboxy-terminal regions facing the cytoplasm. Connexin genes are expressed in a cell type-specific manner with overlapping specificity. The gap junction channels have unique properties depending on the type of connexins constituting the channel.[supplied by OMIM][3]
Connexin 30 is prevalent in the two distinct gap junction systems found in the cochlea: the epithelial cell gap junction network, which couple non-sensory epithelial cells, and the connective tissue gap junction network, which couple connective tissue cells. Gap junctions serve the important purpose of recycling potassium ions that pass through hair cells during mechanotransduction back to the endolymph.[6]
Connexin 30 has been found to be co-localized with connexin 26.[7] Cx30 and Cx26 have also been found to form heteromeric and heterotypic channels. The biochemical properties and channel permeabilities of these more complex channels differ from homotypic Cx30 or Cx26 channels.[8] Overexpression of Cx30 in Cx30 null mice restored Cx26 expression and normal gap junction channel functioning and calcium signaling, but it is described that Cx26 expression is altered in Cx30 null mice. The researchers hypothesized that co-regulation of Cx26 and Cx30 is dependent on phospholipase C signaling and the NF-κB pathway.[9]
The cochlea contains two cell types, auditory hair cells for mechanotransduction and supporting cells. Gap junction channels are only found between cochlear supporting cells.[10] While gap junctions in the inner ear are critically involved in potassium recycling to the endolymph, connexin expression in the supporting cells surrounding the organ of Corti have been found to support epithelial tissue lesion repair following loss of sensory hair cells. An experiment with Cx30 null mice found deficits in lesion closure and repair of the organ of Corti following hair cell loss, suggesting that Cx30 has a role in regulating lesion repair response.[11]
Clinical Significance
Auditory
Connexin 26 and connexin 30 are commonly accepted to be the predominant gap junction proteins in the cochlea. Genetic knockout experiments in mice has shown that knockout of either Cx26 or Cx30 produces deafness.[12][13] However, recent research suggests that Cx30 knockout produces deafness due to subsequent downregulation of Cx26, and one mouse study found that a Cx30 mutation that preserves half of Cx26 expression found in normal Cx30 mice resulted in unimpaired hearing.[14] The lessened severity of Cx30 knockout in comparison to Cx26 knockout is supported by a study examining the time course and patterns of hair cell degeneration in the cochlea. Cx26 null mice displayed more rapid and widespread cell death than Cx30 null mice. The percent hair cell loss was less widespread and frequent in the cochleas of Cx30 null mice.[15]
References
- ↑ Grifa A, Wagner CA, D'Ambrosio L, Melchionda S, Bernardi F, Lopez-Bigas N, Rabionet R, Arbones M, Monica MD, Estivill X, Zelante L, Lang F, Gasparini P (Sep 1999). "Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus". Nat Genet 23 (1): 16–8. doi:10.1038/12612. PMID 10471490.
- ↑ Kibar Z, Der Kaloustian VM, Brais B, Hani V, Fraser FC, Rouleau GA (Oct 1996). "The gene responsible for Clouston hidrotic ectodermal dysplasia maps to the pericentromeric region of chromosome 13q". Hum Mol Genet 5 (4): 543–7. doi:10.1093/hmg/5.4.543. PMID 8845850.
- 1 2 "Entrez Gene: GJB6 gap junction protein, beta 6".
- ↑ Zhao, H. -B.; Kikuchi, T.; Ngezahayo, A.; White, T. W. (2006). "Gap Junctions and Cochlear Homeostasis". Journal of Membrane Biology 209 (2–3): 177–186. doi:10.1007/s00232-005-0832-x. PMC 1609193. PMID 16773501.
- ↑ Erbe, C. B.; Harris, K. C.; Runge-Samuelson, C. L.; Flanary, V. A.; Wackym, P. A. (2004). "Connexin 26 and Connexin 30 Mutations in Children with Nonsyndromic Hearing Loss". The Laryngoscope 114 (4): 607–611. doi:10.1097/00005537-200404000-00003. PMID 15064611.
- ↑ Kikuchi, T.; Kimura, R. S.; Paul, D. L.; Takasaka, T.; Adams, J. C. (2000). "Gap junction systems in the mammalian cochlea". Brain research. Brain research reviews 32 (1): 163–166. doi:10.1016/S0165-0173(99)00076-4. PMID 10751665.
- ↑ Lautermann, J.; Ten Cate, W. J.; Altenhoff, P.; Grümmer, R.; Traub, O.; Frank, H.; Jahnke, K.; Winterhager, E. (1998). "Expression of the gap-junction connexins 26 and 30 in the rat cochlea". Cell and tissue research 294 (3): 415–420. doi:10.1007/s004410051192. PMID 9799458.
- ↑ Yum, S. W.; Zhang, J.; Valiunas, V.; Kanaporis, G.; Brink, P. R.; White, T. W.; Scherer, S. S. (2007). "Human connexin26 and connexin30 form functional heteromeric and heterotypic channels". AJP: Cell Physiology 293 (3): C1032–C1048. doi:10.1152/ajpcell.00011.2007. PMID 17615163.
- ↑ Ortolano, S.; Di Pasquale, G.; Crispino, G.; Anselmi, F.; Mammano, F.; Chiorini, J. A. (2008). "Coordinated control of connexin 26 and connexin 30 at the regulatory and functional level in the inner ear". Proceedings of the National Academy of Sciences 105 (48): 18776–18781. doi:10.1073/pnas.0800831105. PMC 2596232. PMID 19047647.
- ↑ Kikuchi, T.; Kimura, R. S.; Paul, D. L.; Adams, J. C. (1995). "Gap junctions in the rat cochlea: Immunohistochemical and ultrastructural analysis". Anatomy and embryology 191 (2): 101–118. doi:10.1007/BF00186783. PMID 7726389.
- ↑ Forge, A.; Jagger, D. J.; Kelly, J. J.; Taylor, R. R. (2013). "Connexin30 mediated intercellular communication plays an essential role in epithelial repair in the cochlea". Journal of Cell Science 126 (Pt 7): 1703–12. doi:10.1242/jcs.125476. PMID 23424196.
- ↑ Teubner, B.; Michel, V.; Pesch, J.; Lautermann, J.; Cohen-Salmon, M.; Söhl, G.; Jahnke, K.; Winterhager, E.; Herberhold, C.; Hardelin, J. P.; Petit, C.; Willecke, K. (2003). "Connexin30 (Gjb6)-deficiency causes severe hearing impairment and lack of endocochlear potential". Human Molecular Genetics 12 (1): 13–21. doi:10.1093/hmg/ddg001. PMID 12490528.
- ↑ Kudo, T.; Kure, S.; Ikeda, K.; Xia, A. P.; Katori, Y.; Suzuki, M.; Kojima, K.; Ichinohe, A.; Suzuki, Y.; Aoki, Y.; Kobayashi, T.; Matsubara, Y. (2003). "Transgenic expression of a dominant-negative connexin26 causes degeneration of the organ of Corti and non-syndromic deafness". Human Molecular Genetics 12 (9): 995–1004. doi:10.1093/hmg/ddg116. PMID 12700168.
- ↑ Boulay, A. -C.; Del Castillo, F. J.; Giraudet, F.; Hamard, G.; Giaume, C.; Petit, C.; Avan, P.; Cohen-Salmon, M. (2013). "Hearing is Normal without Connexin30". Journal of Neuroscience 33 (2): 430–434. doi:10.1523/JNEUROSCI.4240-12.2013. PMID 23303923.
- ↑ Sun, Y.; Tang, W.; Chang, Q.; Wang, Y.; Kong, W.; Lin, X. (2009). "Connexin30 null and conditional connexin26 null mice display distinct pattern and time course of cellular degeneration in the cochlea". The Journal of Comparative Neurology 516 (6): 569–579. doi:10.1002/cne.22117. PMC 2846422. PMID 19673007.
Further reading
- Stoppini M, Bellotti V, Negri A; et al. (1995). "Characterization of the two unique human anti-flavin monoclonal immunoglobulins.". Eur. J. Biochem. 228 (3): 886–93. doi:10.1111/j.1432-1033.1995.tb20336.x. PMID 7737190.
- Eggena M, Targan SR, Iwanczyk L; et al. (1996). "Phage display cloning and characterization of an immunogenetic marker (perinuclear anti-neutrophil cytoplasmic antibody) in ulcerative colitis.". J. Immunol. 156 (10): 4005–11. PMID 8621942.
- Radhakrishna U, Blouin JL, Mehenni H; et al. (1997). "The gene for autosomal dominant hidrotic ectodermal dysplasia (Clouston syndrome) in a large Indian family maps to the 13q11-q12.1 pericentromeric region.". Am. J. Med. Genet. 71 (1): 80–6. doi:10.1002/(SICI)1096-8628(19970711)71:1<80::AID-AJMG15>3.0.CO;2-R. PMID 9215774.
- Clausen BE, Bridges SL, Lavelle JC; et al. (1998). "Clonally-related immunoglobulin VH domains and nonrandom use of DH gene segments in rheumatoid arthritis synovium.". Mol. Med. 4 (4): 240–57. PMC 2230361. PMID 9606177.
- Kelley PM, Abe S, Askew JW; et al. (2000). "Human connexin 30 (GJB6), a candidate gene for nonsyndromic hearing loss: molecular cloning, tissue-specific expression, and assignment to chromosome 13q12.". Genomics 62 (2): 172–6. doi:10.1006/geno.1999.6002. PMID 10610709.
- Dias Neto E, Correa RG, Verjovski-Almeida S; et al. (2000). "Shotgun sequencing of the human transcriptome with ORF expressed sequence tags.". Proc. Natl. Acad. Sci. U.S.A. 97 (7): 3491–6. doi:10.1073/pnas.97.7.3491. PMC 16267. PMID 10737800.
- Lamartine J, Munhoz Essenfelder G, Kibar Z; et al. (2000). "Mutations in GJB6 cause hidrotic ectodermal dysplasia.". Nat. Genet. 26 (2): 142–4. doi:10.1038/79851. PMID 11017065.
- Rash JE, Yasumura T, Dudek FE, Nagy JI (2001). "Cell-specific expression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons.". J. Neurosci. 21 (6): 1983–2000. PMC 1804287. PMID 11245683.
- Lerer I, Sagi M, Ben-Neriah Z; et al. (2002). "A deletion mutation in GJB6 cooperating with a GJB2 mutation in trans in non-syndromic deafness: A novel founder mutation in Ashkenazi Jews.". Hum. Mutat. 18 (5): 460. doi:10.1002/humu.1222. PMID 11668644.
- del Castillo I, Villamar M, Moreno-Pelayo MA; et al. (2002). "A deletion involving the connexin 30 gene in nonsyndromic hearing impairment.". N. Engl. J. Med. 346 (4): 243–9. doi:10.1056/NEJMoa012052. PMID 11807148.
- Smith FJ, Morley SM, McLean WH (2002). "A novel connexin 30 mutation in Clouston syndrome.". J. Invest. Dermatol. 118 (3): 530–2. doi:10.1046/j.0022-202x.2001.01689.x. PMID 11874494.
- Pallares-Ruiz N, Blanchet P, Mondain M; et al. (2002). "A large deletion including most of GJB6 in recessive non syndromic deafness: a digenic effect?". Eur. J. Hum. Genet. 10 (1): 72–6. doi:10.1038/sj.ejhg.5200762. PMID 11896458.
- Common JE, Becker D, Di WL; et al. (2003). "Functional studies of human skin disease- and deafness-associated connexin 30 mutations.". Biochem. Biophys. Res. Commun. 298 (5): 651–6. doi:10.1016/S0006-291X(02)02517-2. PMID 12419304.
- Strausberg RL, Feingold EA, Grouse LH; et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Beltramello M, Bicego M, Piazza V; et al. (2003). "Permeability and gating properties of human connexins 26 and 30 expressed in HeLa cells.". Biochem. Biophys. Res. Commun. 305 (4): 1024–33. doi:10.1016/S0006-291X(03)00868-4. PMID 12767933.
- Zhang XJ, Chen JJ, Yang S; et al. (2004). "A mutation in the connexin 30 gene in Chinese Han patients with hidrotic ectodermal dysplasia.". J. Dermatol. Sci. 32 (1): 11–7. doi:10.1016/S0923-1811(03)00033-1. PMID 12788524.
- Pandya A, Arnos KS, Xia XJ; et al. (2004). "Frequency and distribution of GJB2 (connexin 26) and GJB6 (connexin 30) mutations in a large North American repository of deaf probands.". Genet. Med. 5 (4): 295–303. doi:10.1097/01.GIM.0000078026.01140.68. PMID 12865758.
- Günther B, Steiner A, Nekahm-Heis D; et al. (2004). "The 342-kb deletion in GJB6 is not present in patients with non-syndromic hearing loss from Austria.". Hum. Mutat. 22 (2): 180. doi:10.1002/humu.9167. PMID 12872268.
- Harris, A and Locke, D (2009). Connexins, A Guide. New York: Springer. p. 574. ISBN 978-1-934115-46-6.
External links
- Der Kaloustian, Vazken M (2011-02-03). Hidrotic Ectodermal Dysplasia 2. NBK1200. In Pagon RA, Bird TD, Dolan CR; et al., eds. (1993–). GeneReviews™ [Internet]. Seattle WA: University of Washington, Seattle. Check date values in:
|date=
(help)- Online 'Mendelian Inheritance in Man' (OMIM) Gap Junction Protein, BETA-6; GJB6 -604418
- Online 'Mendelian Inheritance in Man' (OMIM) Keratitis-Ichthyosis-Deafness Syndrome, Autosomal Dominant -148210
- Online 'Mendelian Inheritance in Man' (OMIM) Deafness, Autosomal Dominant 3A; DFNA3A -601544
- Online 'Mendelian Inheritance in Man' (OMIM) Clouston Syndrome -129500
- Online 'Mendelian Inheritance in Man' (OMIM) Deafness, Autosomal Recessive 1A; DFNB1A -220290
- Smith, Richard JH; Sheffield, Abraham M; Van Camp, Guy (2012-04-19). Nonsyndromic Hearing Loss and Deafness, DFNA3. NBK1536. In GeneReviews
- Smith, Richard JH; Van Camp, Guy (2014-01-02). Nonsyndromic Hearing Loss and Deafness, DFNB1. NBK1272. In GeneReviews
- Smith, Richard JH; Shearer, A Eliot; Hildebrand, Michael S; Van Camp, Guy (2014-01-09). Deafness and Hereditary Hearing Loss Overview. NBK1434. In GeneReviews
|